
2 

PRIMARY CARE ACCESS IS ASSOCIATED WITH IMPROVED LONG-TERM SURVIVAL 
AFTER SEVERE TRAUMATIC INJURY 

 
Elliott K. Yee (SSTP)1, Stephanie A. Mason1, Laura C. Rosella2, Liisa Jaakkimainen3, 
Brandon M. Zagorski4, Darby Little5, Gemma Postill6, Avery B. Nathens1, Bourke W. 

Tillmann7, Barbara Haas1,7 

1Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Ontario 
2Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario 

3Department of Family and Community Medicine, University of Toronto, Toronto, Ontario 
4ICES 

5Division of Plastic, Reconstructive & Aesthetic Surgery, Department of Surgery, University of 
Toronto, Toronto, Ontario 

6Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario 
7Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario 

 
 

 
 
The authors have decided not to make the research results available at this time and 
will provide updates as soon as the results can be shared. 
 
 
 



3 

 
 
 
 
 
 
 
 
 
 
 
 
 

Lomitapide enhances cytotoxic effects of temozolomide in chemo-resistant glioblastoma 
 

Alyona Ivanova1,2, Taylor Wilson1,2, Kimia Ghannad-Zadeh1,2, Esmond Tse1, Megan Wu1, 
Sunit Das1-4  

1The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, 
Toronto, Canada 

2 Institute of Medical Sciences, University of Toronto, Toronto, Canada 
3 Division of Neurosurgery, University of Toronto, Toronto, Canada 

4 Keenan Chair in Surgery, St. Michael’s Hospital, University of Toronto, Toronto, Canada 

  



3 

INTRODUCTION 
Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumour in 
adults, with a median survival following multi-modality therapy of 14.6 months.1 The current 
standard of care for patients with glioblastoma includes maximal safe surgical resection followed 
by radiation and chemotherapy with the alkylating agent, temozolomide (TMZ).2 However, more 
than one-third of patients experience tumour progression during conventional therapy,1 
suggesting that many of these patients harbor tumour cells that are intrinsically resistant to 
temozolomide-associated cytotoxicity. There is significant need for novel therapies to 
complement or improve our current treatments. 
 
METHODS 
Study Design 
Drug repurposing has gained attention in cancer research for its time- and monetary-efficiency in 
advancing chemical leads for clinical studies.3 The use of FDA-approved agents significantly 
decreases the time required for agents to go from bench to bedside, as toxicological data for 
these drugs is publicly available.4  
 
In this study, we performed a high-throughput drug screen using a library of approximately 900 
FDA-approved candidates capable of crossing the blood-brain barrier (BBB). We identified eight 
agents that were predicted to have good brain penetration and exhibited cytotoxicity against 
glioma cells when combined with TMZ.  As multiple recent reports have identified cholesterol 
biosynthesis as a vulnerability in glioblastoma,5 we chose to investigate the lipid-lowering drug 
(statin), lomitapide (Juxtapid). 
 
RESULTS 
Lomitapide exerts cytotoxic effects on glioma cells and sensitizes them to the effects of 
temozolomide 
To assess the drug response of lomitapide in glioma cells, a dose-response viability curve was 
constructed for CTL- and TR-U251 (treatment-resistant) cell lines treated with lomitapide for 72 
hours. Lomitapide produced characteristic dose-response relationship in an exploitable dosage 
range and showed to be beneficial for GBM chemo-resistant therapy. Lomitapide treatment 
resulted in cell death in both CTL-U251 and TR-U251 cell lines in a dose-dependent manner, with 
minimal effect on viability of normal HEK293 cells (Figure 1A).  
Concomitant treatment with lomitapide and TMZ resulted in a statistically significant decrease in 
viability in both U251 and TR-U251 cells, compared to treatment with TMZ alone (Figure 1B-C). 
Notably, when TMZ was combined with lomitapide, 1/10 times lower TMZ dosage (10µM) induced 
just as much cytotoxicity in CTL-U251 and TR-U251 cells as 100µM TMZ combined with 2µM 
lomitapide (Figure 1I-J). GBM patients are therefore provided with a new therapeutic potential 
that minimizes chemotoxicity, increases overall quality of life and eventually improves patient 
outcome. 
As glioma stem cells (GSCs) have been postulated to be the drivers of tumour progression and 
treatment resistance, we next examined the effect of lomitapide in multiple GSC cell lines. Briefly, 
three GSC lines (GliNS1, 811, 818) were treated with lomitapide alone, TMZ alone, or 
concomitant lomitapide and TMZ. Concomitant treatment with lomitapide and TMZ resulted in a 
statistically significant decrease in cell viability in all three GSC lines, compared to treatment with 
TMZ alone (Figure 1D-F).  
 
Lomitapide inhibits de novo cholesterol synthesis 
The use of statins (lipid-lowering drugs) as anti-neoplastic agents has recently gained attention in 
oncology.7 Statins utilize the dependency of highly proliferative tumour cells on the mevalonate 
pathway - an essential biosynthetic step that provides the precursors for de novo synthesis of 
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cholesterol.7 Statins block mevalonate synthesis by inhibiting the rate-limiting step of this 
pathway.7 We hypothesized that the effect of lomitapide on glioma cells was due to the statin-like 
mechanism of function as an inhibitor of the mevalonate pathway (Figure 2B). Inhibition of the 
mevalonate pathway by lomitapide in CTL-U251 and TR-U251 cells was verified by the 
accumulation of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) 
(Figure 2C-D, F-G). HMGCR did not accumulate in lomitapide-treated HEK293 cells (Figure 2E), 
emphasizing that lomitapide is selective towards neoplastic cells with increased mevalonate 
pathway flux that supports oncogenesis. 
Notably, lomitapide treatment resulted in a significant decrease in cholesterol uptake by glioma 
cells cultured in serum-free media (Figure 2H), in a dose-dependent manner. Since we did not 
observe any change in expression of lipid transfer protein MTTP(Figure 2A), we postulate that 
decreased cholesterol uptake in glioma cells with lomitapide treatment is due to depletion of 
cholesterol in the media secondary to inhibition of intracellular cholesterol synthesis.  

Lomitapide primes glioma cells for ferroptosis vulnerability via depletion of CoQ10 and 
production of ROS 
In addition to its role in cholesterol synthesis, the mevalonate pathway is also critical for production 
of the mitochondrial protein, coenzyme Q10 (CoQ10).8 CoQ10 is a universal multifunctional lipid with 
fundamental roles in cellular homeostasis. Besides its metabolic and bioenergetic functions in 
mitochondria, CoQ10 acts as a lipophilic antioxidant and supports enzymatic reactions in other 
cellular membranes.9  
We hypothesized that mevalonate pathway inhibition by lomitapide would deplete CoQ10 levels in 
highly proliferative glioma cells that rely on mevalonate pathway and cause oxidative stress, 
priming them for chemotherapy-induced cell death (Figure 2I). Indeed, treatment with lomitapide 
resulted in CoQ10 depletion in both CTL-U251 and TR-U251 cells (Figure 2J). Subsequently, 
cellular ROS were significantly elevated in lomitapide-treated CTL-U251 and TR-U251 cells, but 
not in HEK293 cells (Figure 2K). These findings indicate that while lomitapide has a pronounced 
effect in glioma cells, it exerts minimum cytotoxicity in normal cells.  
Our in vitro findings support the conclusion that lomitapide enhances glioma cell sensitivity to TMZ 
through deregulation of mevalonate pathway and induction of ferroptosis. 
 
Lomitapide delays tumour recurrence and improves survival when combined with TMZ in 
a glioblastoma xenograft mouse model 
We evaluated the effect of concurrent lomitapide treatment with TMZ on tumour growth and 
survival using a mouse xenograft model. Following intracranial inoculation with luciferase-
expressing U251 cells, mice were allocated into four treatment groups: 1) control (no treatment); 
2) 3 cycles of lomitapide (7.6 mg/kg/day) alone; 3) TMZ (10 mg/kg/day) alone for a 1-week; 4) 
combination therapy with lomitapide and TMZ (Figure 3A).   
 
Control and lomitapide alone-treated mice displayed weekly advances in tumour growth and all 
succumbed to their disease within 4 weeks of implantation. While lomitapide alone demonstrated 
little to no efficacy on survival or anti-tumour activity at the concentration used for treatment, 
(Figures 3B and 3C), the addition of lomitapide to TMZ therapy resulted in a significant reduction 
in tumour growth (Figures 3B-D) and prolongation in mouse survival (Figure 3E), compared to 
treatment with TMZ alone (Figure 3B-E). Tumour progression was significantly delayed in mice 
receiving combination therapy (Figure 3C), compared to those treated with TMZ alone. 
  
CONCLUSIONS 
Our findings identify lomitapide as a potential therapeutic agent capable of targeting treatment 
resistance and delaying tumour progression in glioblastoma.  
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Figure 1. Lomitapide shows potential to target GBM cells and sensitize them to the effects of 
temozolomide, while minimizing damage to normal cells in vitro.  

Cells were treated with TMZ with or without 2µM lomitapide. Cytotoxicity was estimated at 72 
hrs post-treatment by Cell Viability Assay. (A) Viability assay shows CTL-U251 (green), TR-
U251 (red) and HEK-293 (blue) cell response after treatment with serially increasing 
concentrations of lomitapide. Compared to TMZ alone, CTL-U251 (B) and TR-U251 (C) cell 
lines treated concomitantly with lomitapide (2 μM) and TMZ (100 μM) significantly decrease cell 
viability (p<0.001). Cell viability analysis on GBM stem cell lines GliNS1 cells (D), 811 cells (E), 
818 cells (F) demonstrates that a concentration of lomitapide near its IC80 value (2 μM) added 
in combination with TMZ (100 μM) results in a significant reduction in cell viability, as compared 
to TMZ treatment alone (p<0.01, p<0.001, p<0.001, respectively). (G) Normal HEK293 cells, 
CTL-U251 and TR-U251 cells were treated with various doses of TMZ ranging from 0 to 100µM 
with or without 2µM lomitapide. Cell viability was normalized to untreated control. HEK293 cells 
(H), CTL-U251 cells (I) and TR-U251 cells (J) were treated with TMZ combined with 2µM of 
lomitapide. Cell viability was normalized to TMZ treatment without lomitapide. 
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Figure 2. Lomitapide cytotoxicity in vitro is attributed to inhibition of de novo cholesterol 
synthesis which primes glioma cells for ferroptosis via depletion of CoQ10 and production of 
ROS 

(A) Lomitapide (2µM) treatment has no effect on the expression of microsomal triglyceride 
transport protein (MTTP) in CTL-U251 cells as confirmed by Western blot analysis post 24-, 48- 
and 72 hours of drug treatment. (B) Proposed mechanism of action of lomitapide. Lomitapide 
inhibits the critical rate-limiting step of mevalonate pathway by binding to HMGCR. While 
normally cholesterol production acts through a negative feedback loop to control HMGCR 
synthesis, reduction in cholesterol production causes accumulation of HMGCR. Inhibition of 
mevalonate pathway in CTL-U251 (C, F) and TR-U251 (D, G) cells at 24 and 48 hours following 
lomitapide treatment (0 μM, 1 μM, or 2 μM) is verified by accumulation of HMGCR. Lomitapide 
treatment does not lead to accumulation of HMGCR in normal HEK293 cells (E). (H) Cholesterol 
uptake by CTL-U251 cells following a 72-hour incubation in serum-free media at various 
lomitapide concentrations. U-18666A represents positive uptake control. (I) Mevalonate 
pathway inhibition depletes CoQ10 levels, results in ROS accumulation, which primes the cells 
for ferroptosis and makes them more susceptible to TMZ treatment. (J) Relative CoQ10 
concentration in CTL-U251 and TR-U251 cells following 24- or 48-hour lomitapide treatment (2 
µM). (K) Cellular ROS production in CTL-U251, TR-U251 and HEK293 cells treated with 2 µM 
lomitapide for 24, 48 and 72 hours. (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001)  
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Figure 3. Lomitapide delays tumor recurrence and improves survival when combined with TMZ 
treatment in a glioblastoma xenograft model.  

Post intracranial inoculation with luciferase-labeled U251 cells, mice were randomized into 4 
groups. Bioluminescent images were recorded using an IVIS Lumina II Bioluminescence 
System (PerkinElmer) every 7 days. Total photon flux values were quantified in tumor 
progression between treatment groups as described in Sachdeva et al 2019.6 (A) Schematic 
showing in vivo experimental design for U251 cells injected intracranially and thereafter treated 
with lomitapide, temozolomide (TMZ), or concomitant lomitapide and TMZ. (B) Bioluminescence 
imaging of intracranial glioblastoma mouse xenograft visualizing tumor growth of U251 cells. 
Empty spaces indicate sacrificed mice at humane endpoints. (C) Signal progression of total flux 
activity comparing tumor growth at 1- to 4-weeks post-inoculation. (D) Total photon flux of 
concomitant TMZ and lomitapide-treated and TMZ alone–treated mice 1-4 weeks following 
transplantation. (E) Kaplan–Meier survival curves of mice in individual cohorts (n=16). Median 
survival and statistical significance were determined by log-rank test: * p=0.0239 for lomitapide 
+ TMZ vs. TMZ; ** p=0.0015 for lomitapide + TMZ vs. lomitapide;  ** p=0.013 for lomitapide + 
TMZ vs. Control.  
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INTRODUCTION 
Non-muscle invasive bladder cancer (NMIBC) is one of the most expensive malignancies to treat, 
due to the need for long-term surveillance and repeated transurethral resection of bladder 
tumours (TURBT).1 Despite complete resection and adjuvant treatments, progression rates to 
potentially lethal muscle-invasive disease (MIBC) remain high and the window of cure is narrow, 
particularly for intermediate- and high-risk NMIBC.2–4 Therefore, accurate prediction of tumour 
progression is essential for patient counselling, to guide timely treatment intensification, and to 
identify clinical trial candidates. 
 
Risk calculators have historically been used to identify NMIBC patients at increased risk of 
progression.5,6 However, their applicability to contemporary NMIBC patients is limited due to 
changes in management and their reliance on the World Health Organization (WHO) 1973 
grading system, which is prone to substantial interobserver variability.7 Current approaches to risk 
stratification are based on the European Association of Urology (EAU) NMIBC risk calculator, 
which is the only model that also incorporates the current WHO 2004/2022 grading system and 
classifies patients into low-, intermediate-, high-, or very high-risk groups.8 However, patients 
treated with bacillus Calmette-Guérin (BCG) were excluded, which is now standard of care for 
intermediate- and high-risk NMIBC. On external validation, the EAU model has a c-index of 0.63.9 
 
Artificial intelligence (AI) has shown promise in improving personalized prognostication and 
treatment in uro-oncology.10 However, current evidence supporting AI applications in NMIBC is 
weak. Using APPRAISE-AI, a novel tool we developed to assess the methodological and reporting 
quality of AI studies, we found that most AI studies in NMIBC prognostication were low quality.1,11 
Common shortcomings included dataset limitations, inconsistent outcome definitions, 
methodological concerns, inadequate model evaluation, and reproducibility issues. 
 
To address these limitations, we aimed to develop and validate PROGRxN-BCa (PROGression 
Risk assessment in NMIBC), a prognostic model to estimate the five-year risk of progression in 
NMIBC patients using the largest, international cohort of almost 13000 patients from both 
academic and community hospitals. A secondary aim was to ensure that PROGRxN-BCa was 
generalizable regardless of resource constraints, BCG shortages, or guideline adherence. Finally, 
we aimed to improve substratification of the highly heterogeneous intermediate- and high-risk 
groups to provide more precise risk estimates of disease progression.12 
 
METHODS 
Study design 
This study was a supervised time-to-event analysis to predict time to progression using available 
information after TURBT. A total of 1956 patients with 382 progression events were required to 
satisfy the minimum sample size criteria of Riley et al.13 This study was conducted following the 
STREAM-URO framework, a standardized reporting framework we previously developed for AI 
studies in urology.14 Two data scientists independently analyzed the data to verify the results. 
 
Data sources and eligibility criteria 
The training cohort included patients who underwent TURBT at four Canadian academic and 
community-based hospitals between Jan 1, 2005 and Jun 30, 2022. An international, external 
testing cohort comprising of patients treated at 30 North American and European institutions 
between Jan 1, 2005 and Dec 31, 2023 was used (Figure 1). All NMIBC patients (Ta, T1, or 
primary CIS) were included regardless of prior tumour history. Patients received BCG or other 
intravesical chemotherapy at their physician’s discretion. Exclusion criteria included muscle 
invasive disease (stage ≥ T2) at diagnosis, treatment before Jan 1, 2005, immediate cystectomy 
for NMIBC, benign pathology, and missing pathological information.  
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Data abstraction, processing, and outcome definition 
Candidate features (variables) known before or at index TURBT were selected based on prior 
literature.2,3 Missing data were imputed using HyperImpute (version 0.1.17), a generalized 
iterative imputation framework.15 No other feature engineering or removal steps were performed. 
 
Primary outcome was time to progression, defined as the interval from date of TURBT to date of 
first development of muscle-invasive (stage ≥ pT2 either at subsequent TURBT or cystectomy), 
nodal, and/or metastatic disease. This definition was chosen due to its treatment implications and 
its alignment with the EAU risk calculator. Patients without progression were censored at the date 
of last follow-up cystoscopy or date of death, whichever event occurred first. 
 
PROGRxN-BCa development and explanations 
PROGRxN-BCa was developed using a random survival forest (scikit-survival version 0.22.2). All 
candidate features were incorporated into the model. The final PROGRxN-BCa model was 
retrained on the full training cohort using the optimal set of hyperparameters. Feature importance 
was estimated using permutation importance (scikit-learn version 1.3.2), which measures the 
change in model performance when the relationship between a given feature and progression 
risk is disrupted by random shuffling. 
 
Model evaluation 
PROGRxN-BCa was compared to the widely-used EAU risk calculator, which is endorsed by the 
EAU NMIBC guidelines and is the only model that can incorporate either the WHO 1973 or the 
current 2004/2022 grading system.8 
 
Model evaluation was based on discrimination, calibration, and net benefit. Five-year progression 
risk was used given its clinical relevance in guiding management and its availability as a prediction 
timepoint for the EAU risk calculator. Discrimination was assessed by concordance index (c-
index). Smoothed calibration curves compared the predicted and observed risks of progression. 
Decision curve analysis measured the net benefit of each model compared to “treat all” and “treat 
none” strategies.16 Risk thresholds from 10-50% were deemed clinically relevant to inform 
treatment decisions, ranging from additional intravesical therapy (least aggressive) to early 
cystectomy (most aggressive). Bias assessments were performed to identify potential differences 
in model performance across clinically relevant patient-specific and disease-specific subgroups.17 
 
Subset analyses 
Subset analysis was performed on patients with WHO 1973 grade also available. PROGRxN-
BCa was compared to the EAU risk calculator (using WHO 1973 grade),8 and an AI model by 
Jobczyk et al. – the highest quality AI model identified in our previous systematic review.18 
 
PROGRxN-BCa was also used to substratify intermediate-risk patients. Current guidelines 
recommend further categorizing these patients based on the presence of additional risk factors, 
including multiple tumours, tumour size > 3 cm, early recurrence (< 1 year), frequent recurrence 
(> 1/year), and failure of prior intravesical therapy.12 Cumulative incidence curves for progression 
were compared between these guideline-defined subgroups (0, 1-2, or ≥ 3 risk factors) and 
thresholds derived from the top and bottom thirds of PROGRxN-BCa risk scores from the training 
cohort. PROGRxN-BCa was also used to substratify high-risk NMIBC into two subgroups based 
on the threshold corresponding to the top third of risk scores in the training cohort. 
 
RESULTS 
Overall, 1405 out of 12659 patients (11%) developed progression during a median follow-up of 
3.3 years (IQR 1.6-5.8). The training cohort comprised of 3324 patients, including 1700 and 1624 
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patients treated at academic and community-based hospitals, respectively (Figure 1). During a 
median follow-up of 4.8 years (IQR 2.5-8.0), 459 patients (14%) from the training cohort 
developed progression. The international external testing cohort included 9335 patients, of which 
946 patients (10%) progressed during a median follow-up of 2.8 years (IQR 1.4-5.1). Overall, the 
estimated five-year progression rate was 2% (IQR 1-2) for low-risk, 7% (IQR 6-8) for intermediate-
risk, 21% (IQR (IQR 20-22) for high-risk, and 34% (IQR 30-39) for very high-risk patients. Patients 
who received guideline-concordant care had lower five-year progression rates compared to those 
who did not (high-risk: 18 vs 26%; very high-risk: 29 vs 42%). 
 
The final PROGRxN-BCa model comprised of 14 features including age, sex, recurrent tumour, 
stage, T1 substratification, concomitant CIS, grade, variant histology, lymphovascular invasion, 
number of tumours, tumour diameter, repeat TURBT, BCG, and single instillation chemotherapy 
(SIC). Stage and grade were the most important features for predicting progression. 
 
Overall, PROGRxN-BCa significantly outperformed the EAU risk calculator. In the training cohort, 
PROGRxN-BCa achieved a c-index of 0.83 (95% CI 0.81-0.84) compared to 0.76 (95% CI 0.74-
0.78, p<0.001) for the EAU risk calculator. Similarly, in the external testing cohort, PROGRxN-
BCa achieved a c-index of 0.79 (95% CI 0.77-0.80) compared to 0.71 (95% CI 0.70-0.72, 
p<0.001) for the EAU risk calculator. On bias assessment, PROGRxN-BCa outperformed the EAU 
risk calculator across all clinically relevant subgroups examined (Figure 2A). As shown in Figure 
2B, both models were well calibrated for risks between 0-20%, however they tended to 
overestimate progression risk in patients with higher predicted risks. On decision curve analysis, 
PROGRxN-BCa had higher net benefit overall and across most subgroups for clinically relevant 
thresholds between 0-50% (Figure 2C, subgroups not shown). On subset analysis of patients 
with WHO 1973 grade available (n=6837), PROGRxN-BCa achieved a c-index of 0.80 (95% CI 
0.78-0.81), outperforming the EAU risk calculator using the WHO 1973 grading scheme (c-index 
0.74, 95% CI 0.72-0.75) and the Jobczyk AI model (c-index 0.64, 95% CI 0.63-0.66). 
 
To understand how PROGRxN-BCa might benefit current clinical practice, we assessed how it 
would substratify intermediate-risk patients (n=3137) compared to current guideline 
recommendations. As shown in Figure 3A, current recommended substrata could not distinguish 
between the 0 and 1-2 risk factors groups, with five-year progression risks of 7 (95% CI 5-9) and 
6% (95% CI 5-8), respectively. In contrast, PROGRxN-BCa separated these patients into distinct 
risk tertiles (Figure 3B). Five-year progression risks for the lower, middle, and upper tertiles were 
2 (95% CI 1-4), 7 (95% CI 6-8), and 17% (95% CI 12-24), respectively, with 9% of intermediate-
risk patients being reclassified into the upper tertile. PROGRxN-BCa was also capable of 
substratifying high-risk patients (n=5833) into two subgroups, with five-year progression risks of 
11% (95% CI 9-13) and 26% (95% CI 25-28), respectively (Figure 3C). 
 
CONCLUSION 
In conclusion, this study demonstrates that our AI-based PROGRxN-BCa outperforms current 
guideline-endorsed prediction tools for NMIBC progression and improves substratification for both 
intermediate- and high-risk groups. In contrast to prior risk calculators, which estimate progression 
risk based on predefined risk groups, PROGRxN-BCa offers an individualized approach to 
prognostication to tailor treatment decisions for both BCG-treated and untreated patients. It also 
addresses limitations of prior tools by incorporating the current WHO 2004/2022 grading system 
and including patients who received both guideline- and non-guideline-concordant care, all while 
demonstrating robust performance on the largest, international NMIBC validation cohort to-date. 
Implementation of PROGRxN-BCa (available at https://progrxn.ca/) into NMIBC guidelines has 
the potential to enhance risk stratification and optimize patient management. 
 

https://progrxn.ca/
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Figure 1. Patient inclusion flowchart for the (A) training and (B) international external testing cohort.19,20 The training cohort included 
the four Canadian academic (Princess Margaret Cancer Centre, University Health Network and Mount Sinai Hospital, Sinai Health 
System) and community hospitals (Credit Valley Hospital and Mississauga Hospital). The external testing cohort included MD Anderson 
Cancer Centre, United States; 13 academic institutions affiliated with the Canadian Bladder Cancer Information System, a prospectively 
maintained national database for bladder cancer patients; 15 academic institutions affiliated with the EAU NMIBC Guidelines Panel19; 
and Brussels University Hospital, Belgium. Patients that were treated at any of the training cohort institutions were excluded from the 
external testing cohort to prevent data leakage. 
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Figure 2. (A) Bias assessment comparing subgroup-specific c-indexes for all models. Differences 
in c-index between PROGRxN-BCa and the EAU risk calculator are shown in the forest plot. 
†Socioeconomic status was only available for Canadian patients. Quintile 1 was excluded from 
this analysis due to insufficient samples. ‡Guideline-concordant care was defined as follows: BCG 
administration for high grade, T1, or any CIS; repeat TURBT for T1 tumours; and omission of BCG 
and repeat TURBT for primary low-risk tumours. (B) Smoothed calibration plot of all models by 
measuring the degree of agreement between the predicted and observed risks of progression at 
five years. The dotted line represents perfect calibration. (C) Clinical utility of all models assessed 
using decision curve analysis. The higher the net benefit, the better the potential clinical impact 
and identification of patients who may benefit most from treatment intensification. 
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Figure 3. Substratification of intermediate-risk patients (n=3137) based on (A) the number of risk factors (0, 1-2, or ≥ 3 risk factors) 
and (B) PROGRxN-BCa tertiles. Risk factors included multiple tumours, tumour size > 3 cm, early recurrence (< 1 year), frequent 
recurrence (> 1/year), and failure of prior intravesical therapy. PROGRxN-BCa separated patients into risk tertiles based on cutoffs at 
the top and bottom thirds of risk scores from the training cohort. (C) Substratification of high-risk NMIBC (n=5833). Patients were 
substratified into “Upper” and “Lower” subgroups based on the threshold corresponding to the top third of PROGRxN-BCa risk scores 
from the training cohort. This threshold is the same one used to define the “Upper Risk Tertile” for intermediate-risk NMIBC. The 
estimated five-year progression risk (95% confidence interval) for each subgroup is indicated.
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INTRODUCTION 
Coronary artery bypass surgery (CABG) remains the gold standard treatment for extensive 
coronary disease. Compared to medical therapy and percutaneous coronary intervention (PCI), 
CABG provides significant long-term mortality benefits, symptom reduction and protection 
against non-fatal cardiac events.1 However, it is also an invasive procedure that often involves 
manipulating the heart and disruption of physiological coronary blood flow. A transient rise in 
cardiac enzymes, such as creatine-kinase myocardial band and troponin I and T, is routinely 
observed in patients after CABG. This may result from cellular pathways separate from 
myocardial necrosis and typically poses no major effect on long-term outcomes.2 However, 
extremely high levels of ischemic biomarkers are concerning for irreversible myocardial injury 
from complications such as graft failure, poor myocardial protection, incomplete 
revascularization, or tissue damage related to the surgery itself.3  
 
High-sensitivity cardiac troponin I (hs-cTnI) is one biomarker of choice used to diagnose 
spontaneous myocardial infarction (MI).4 Although small elevations in hs-cTnI are prognostically 
important after non-cardiac surgery, high hs-cTnI values in excess of usual diagnostic 
thresholds for MI are routinely observed after cardiac surgery.5–7 There is currently no clear 
consensus on the clinically significant level of hs-cTnI after CABG that should indicate additional 
workup or intervention.2 The hs-cTnI threshold defining postoperative MI has also provoked 
widespread controversy for its impact on outcomes reporting of major clinical trials comparing 
PCI to CABG, given the starkly different levels of hs-cTnI observed after these procedures.8 
 
The Vascular Events in Surgery Patients Cohort Evaluation (VISION) Cardiac Surgery Study 
examined routine hs-cTnI levels associated with clinically important myocardial injury after 
cardiac surgery. The hs-cTnI threshold associated with significant adverse outcomes varied 
according to the cardiac surgical procedure performed; however, the VISION study combined 
CABG and aortic valve replacement surgeries in their original analysis and did not report a 
threshold value for isolated CABG.9 Furthermore, it did not differentiate between CABG 
performed with cardiopulmonary bypass (ONCAB) and without cardiopulmonary bypass 
(OFFCAB).9 OFFCAB is a fundamentally distinct procedure with typically lower postoperative 
hs-cTnI levels. Yet, numerous studies have found comparable, or even inferior, long-term 
outcomes in OFFCAB compared to ONCAB.10–12 It remains unclear what the clinically relevant 
hs-cTnI threshold should be in patients undergoing isolated CABG and whether the same 
threshold should be used for OFFCAB and ONCAB.  
 
Objective 
We aimed to determine hs-cTnI thresholds associated with increased 30-day mortality and 
major vascular complications (MVCs) in patients undergoing isolated CABG and whether these 
values differed between those undergoing OFFCAB and ONCAB. 
 
METHODS 
Study Design 
We conducted a secondary analysis of patients who underwent isolated CABG in the VISION 
Cardiac Surgery study, a multicentre international prospective cohort study conducted from 
2013-2019. Patients were excluded from this analysis if they had: preoperative MI within 24 
hours; preoperative hs-cTnI ≥300 ng/L within 12 hours; salvage cardiac surgery; or any other 
concomitant cardiac surgery. Baseline variables included demographics, cardiovascular risk 
factors, EuroSCORE II, New York Heart Association (NYHA) class and Canadian 
Cardiovascular Society (CCS) class of angina. Hs-cTnI levels on postoperative day 1 (POD1) 
were measured using a standardized assay with an upper reference limit (URL) of 26 ng/L and 
compared between patients who underwent OFFCAB and ONCAB.  
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Outcomes 
The primary outcome of interest was 30-day all-cause mortality. The secondary outcome of 
interest was 30-day MVCs, a composite of vascular mortality, postoperative MI and insertion of 
a mechanical assist device. 
 
Statistical Analysis 
All statistical analyses were conducted in R 4.1.0 (R Foundation for Statistical Computing, 
Vienna). Baseline characteristics and 30-day outcomes were compared between OFFCAB and 
ONCAB using Student’s t-test or Kruskal-Wallis test. Box and whisker plots were constructed to 
compare hs-cTnI levels according to operation and outcomes. Patients without recorded POD1 
hs-cTnI or hs-cTnI <100 ng/L or >51,000 ng/L were excluded from Cox regression analyses.  
 
Cox regression analysis was used to determine the hazard ratios (HRs) for 30-day all-cause 
mortality and MVCs as a function of log-transformed POD1 peak hs-cTnI. Models were adjusted 
by EuroSCORE II (predicted risk of 30-day mortality), with OFFCAB versus ONCAB as an 
interaction term. Fitted models that predicted HRs as a function of log-hs-cTnI were derived via 
natural cubic spline regression. From these fitted models, the lowest hs-cTnI threshold 
associated with HR≥1.00 was identified for all CABG patients and compared between OFFCAB 
and ONCAB patients. The 95% confidence intervals (95%CI) surrounding these hs-cTnI 
thresholds were determined where possible via bootstrap sampling.  
 
RESULTS 
Baseline Characteristics 
The VISION Cardiac Surgery Study included 13,862 patients, of which 6,505 (OFFCAB=1,141, 
ONCAB=5,364) underwent isolated CABG and were eligible for this subanalysis. The median 
age was 65.5 (IQR 58.6-71.8) years, and 80.7% of patients were men. Patients undergoing 
OFFCAB had a lower median EuroSCORE II (1.1% [IQR 0.7-1.8]) than ONCAB (1.2% [IQR 0.8-
1.9]) (p=0.002) and were less likely to have had a previous MI (40.3% vs 51.3%, p<0.001). 
Patients undergoing OFFCAB presented with less advanced NYHA status (p<0.001) and CCS 
angina class (p<0.001) compared to ONCAB (Table 1). 
 
OFFCAB versus ONCAB: 30-Day Outcomes 
The median POD1 peak hs-cTnI level after isolated CABG was recorded across 6,382 patients 
to be 2,446 ng/L (IQR 1,164-5,654). The peak hs-cTnI was significantly lower after OFFCAB 
(640 ng/L [IQR 264-1,689]) than ONCAB (2,972 ng/L [IQR 1,536-6,448], p<0.001). Incomplete 
revascularization rates were higher in OFFCAB (26.3%) than ONCAB (11.2%, p<0.001). There 
was no difference in 30-day all-cause mortality between OFFCAB and ONCAB (1.7% vs 1.4%, 
p=0.5). Similarly, there was no difference in MVCs between OFFCAB (2.1%) and ONCAB 
(2.3%) (p=0.7), nor its individual components of vascular death, MI or insertion of a mechanical 
assist device (Table 2).  
 
Log-Peak hs-cTnI Thresholds and 30-Day Mortality 
Increased log-peak hs-cTnI was associated with a higher likelihood of 30-day mortality for all 
isolated CABG patients (HR=1.7 [95%CI 1.4-2.1) after adjusting for EuroSCORE II. OFFCAB 
had a significant positive interaction effect on the association between hs-cTnI and 30-day 
mortality (p=0.002). Amongst all patients who underwent isolated CABG, the lowest hs-cTnI 
threshold associated with a HR≥1.00 for 30-day mortality was 6,549 ng/L (95%CI 3,609-8,381). 
The hs-cTnI threshold associated with increased risk of 30-day mortality after OFFCAB was 
≥4,708 ng/L (95%CI 581-7,177), compared to ≥6,806 ng/L (95%CI 4,001-13,993) after ONCAB 
(Figure 1A-C).   
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Log-Peak hs-cTnI Thresholds and 30-Day Major Vascular Complications 
Similarly, increased log-peak hs-cTnI was associated with an overall higher likelihood of MVCs 
amongst all patients (adjusted HR=1.7 [95%CI 1.5-1.9]). OFFCAB had a significant positive 
interaction effect on this association (p=0.01). The hs-cTnI threshold associated with HR≥1.00 
for MVC after isolated CABG was 4,781 ng/L (95%CI 1,470-7,557). This hs-cTnI threshold was 
lower for patients who underwent OFFCAB (4,062 ng/L) compared to ONCAB (6,912 ng/L) 
(Figure 1D-F).  
 
CONCLUSIONS 
We conducted a secondary analysis of the landmark VISION Cardiac Surgery study comparing 
hs-cTnI levels in patients after isolated OFFCAB and ONCAB. Our findings (i) provide an 
evidence-based and nuanced definition of clinically significant hs-cTnI elevation to guide 
medical/surgical intervention after CABG and (ii) shed light on the physiology behind troponin 
elevations associated with cardiopulmonary bypass.  
 
One of the most worrisome complications of CABG is postoperative MI, which could be caused 
by graft failure, poor myocardial protection or direct surgical trauma.13 Existing evidence shows 
that, even in the absence of supportive ECG or imaging findings, hs-cTnI is a strong 
prognosticator of adverse outcomes.5–7 However, routine collection of hs-cTnI after CABG 
varies amongst hospitals as the threshold for postoperative MI remains contested.2 Guideline 
definitions range from >10x URL to >70x URL, without clear evidence behind these thresholds 
or consideration that postoperative hs-cTnI levels are procedure-dependent.2,14 These 
definitions have also been applied to measure outcomes in major clinical trials to much debate. 
The Evaluation of XIENCE versus CABG for Effectiveness of Left Main Revascularization 
(EXCEL) trial compared PCI to CABG using a biomarker-only threshold of hs-cTnI >10x URL to 
define perioperative MI in both groups.15 This generated significant controversy regarding the 
overdiagnosis of perioperative MI in the CABG group and biased outcomes that favoured PCI 
for treatment of left main disease.8,16 Our VISION subanalysis provides an evidence-based 
definition of clinically significant myocardial injury after isolated CABG that far exceeds current 
thresholds at 6,549 ng/L (252x URL) for all-cause mortality and 4,781 ng/L (189x URL) for 
MVCs; these thresholds also far exceed those used to define MI in the EXCEL trial.  
 
Establishing nuanced definitions for clinically significant troponin leak between OFFCAB and 
ONCAB also helps to understand the physiology of cardiopulmonary bypass. While the hs-cTnI 
thresholds for mortality HR≥1.00 exceeded those defined by current guidelines, ONCAB had a 
significantly higher hs-cTnI threshold (6,806 ng/L, 261x URL) than OFFCAB (4,708 ng/L, 181x 
URL), with similar findings for MVCs. This may indicate that the excess hs-cTnI typically 
associated with cardiopulmonary bypass arises from reversible and nonfatal forms of 
myocardial injury, such as cell edema, cannulation incisions, and reperfusion-induced free 
radical release.13  
 
In summary, we conducted a subanalysis of isolated CABG procedures in the landmark VISION 
Cardiac Surgery study. We found that the hs-cTnI thresholds associated with increased 30-day 
mortality and MVCs are substantially lower in patients undergoing OFFCAB compared to 
ONCAB. Our findings represent a validated and procedure-specific definition of clinically 
significant hs-cTnI thresholds that can be used routinely to prognosticate the need for early 
reintervention and clinical decision-making after OFFCAB and ONCAB.    
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Table 1. Baseline characteristics of all CABG and ONCAB versus OFFCAB cohorts  
  

Overall 
(n=6505) 

ONCAB 
(n=5364) 

OFFCAB 
(n=1141) 

p-value 

Age (median [IQR]) 65.5 [58.6, 71.8] 65.5 [58.7, 71.8] 65.8 [58.2, 72.0] 0.7 
Female sex (%) 1258 (19.3) 1061 (19.8) 197 (17.3) 0.06 
Baseline BMI 
(median [IQR]) 

28.0 [25.2, 31.2] 28.1 [25.2, 31.4] 27.3 [24.8, 30.7] <0.001 

Hypertension (%) 5090 (78.2) 4234 (78.9) 856 (75.0) 0.004 
Diabetes (%) 2633 (40.5) 2220 (41.4) 413 (36.2) 0.001 
COPD (%) 513 (7.9) 426 (7.9) 87 (7.6) 0.8 
Tobacco use (%) 3870 (59.5) 3224 (60.1) 646 (56.6) 0.03 
Previous MI (%) 3211 (49.4) 2751 (51.3) 460 (40.3) <0.001 
MI within 90 days 
(%) 

1769 (27.2) 1562 (29.1) 207 (18.1) <0.001 

Heart failure (%) 794 (12.2) 673 (12.5) 121 (10.6) 0.08 
Previous stroke (%) 339 (5.2) 289 (5.4) 50 (4.4) 0.2 
Atrial Fibrillation (%) 438 (6.7) 376 (7.0) 62 (5.4) 0.07 
Peripheral arterial 
disease (%) 

600 (9.2) 477 (8.9) 123 (10.8) 0.05 

CCS class (%) 
   

<0.001 
0 789 (12.1) 620 (11.6) 169 (14.8) 

 

1 890 (13.7) 655 (12.2) 235 (20.6) 
 

2 2018 (31.0) 1662 (31.0) 356 (31.2) 
 

3 1969 (30.3) 1702 (31.7) 267 (23.4) 
 

4 839 (12.9) 725 (13.5) 114 (10.0) 
 

NYHA class (%) 
   

<0.001 
0 1108 (17.0) 819 (15.3) 289 (25.3) 

 

1 1210 (18.6) 1002 (18.7) 208 (18.2) 
 

2 2246 (34.5) 1841 (34.3) 405 (35.5) 
 

3 1497 (23.0) 1292 (24.1) 205 (18.0) 
 

4 444 (6.8) 410 (7.6) 34 (3.0) 
 

Urgency (%) 
   

ns 
   Urgent 1881 (28.9) 1629 (30.4) 252 (22.1) 

 

   Emergent 97 (1.5) 81 (1.5) 16 (1.4) 
 

   Elective 4527 (69.6) 3654 (68.1) 873 (76.5) 
 

Poor mobility (%) 248 (3.8) 200 (3.7) 48 (4.2) 0.5 
Baseline Creatinine 
(µmol/L) (mean 
[SD]) 

84.2 (78.8) 85.9 (83.7) 76.6 (49.6) <0.001 

EuroSCORE II 
(median [IQR]) 

1.2 [0.8, 1.9] 1.2 [0.8, 1.9] 1.1 [0.7, 1.8] 0.002 

 
Abbreviations: BMI = body mass index, CCS = Canadian Cardiovascular Society, MI = 
myocardial infarction, NYHA = New York Heart Association, ns = non-significant, OFFCAB = off-
pump CABG, ONCAB = on-pump CABG.  
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Table 2: Peak hs-cTnI levels on postoperative day 1 and 30-day outcomes after isolated CABG 
 

  Overall 
(n=6505) 

ONCAB 
(n=5364) 

OFFCAB 
(n=1141) p-value 

Peak hs-cTnI Day 1 
(median [IQR]) 

2445.8 [1164.2-
5653.5] 

2972 [1536.5-
6448.8] 

640 [264-
1688.5] <0.001 

Complete 
revascularization (%) 5594 (86.1) 4755 (88.8) 839 (73.7) <0.001 

All-cause mortality 
(%) 92 (1.4) 73 (1.4) 19 (1.7) 0.5 

Vascular death (%) 72 (1.1) 57 (1.1) 15 (1.3) 0.6 

Mechanical assist 
device insertion (%) 75 (1.2) 67 (1.2) 8 (0.7) 0.2 

MVC (%) 150 (2.3) 126 (2.3) 24 (2.1) 0.7 

MI (%) 23 (0.4) 17 (0.3) 6 (0.5) 0.4 

 
Abbreviations: MI = myocardial infarction, MVC = major vascular complications, OFFCAB = off-
pump CABG, ONCAB = on-pump CABG. 
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Figure 1: Associations between hs-cTnI and 30-day (1A-C) all-cause mortality and (1D-F) 
major vascular complications in isolated CABG, OFFCAB and ONCAB.  
 

 
 

Abbreviations: 95% CI = 95% confidence interval, HR = hazard ratio, OFFCAB = off-pump 
CABG, ONCAB = on-pump CABG.  
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INTRODUCTION 
Lung transplantation (LTx) is the only curative treatment option for patients suffering from end-
stage lung disease.1 Although, the number of patients requiring an LTx exceeds the amount of 
donor lungs available.2 This can be partially attributed to low donor lung utilization rates, driven 
by concerns about donor lung quality and its potential impact on recipient outcomes.2 
Development of primary graft dysfunction (PGD) within the first 72 hours following LTx is the 
leading cause of mortality post-LTx.3 The ex vivo lung perfusion (EVLP) system was developed 
to evaluate and recondition marginal donor lungs for LTx, by mimicking physiological conditions 
through perfusate circulation and mechanically ventilating the lungs.4,5 The perfusion of lungs 
outside the body allows for advanced assessments of marginal donor lungs to evaluate their 
transplant suitability.5 Advanced assessments performed on EVLP include unobstructed X-rays,6,7 
and biochemical,8 physiological,9 and biological assessments.10,11 Currently, biological 
assessments are not a part of standard clinical EVLP assessment, yet research has shown 
biomarkers in EVLP perfusate can provide information on the donor lungs inflammatory 
responses,11–14 cell death processes,15–17 and endothelial damage.18–20 Although, current 
biomarker research must overcome many limitations prior to clinical use. Preliminary research on 
endothelin-1 (ET-1), a potent chemokine that stimulates rapid vasoconstriction, suggests that 
levels during EVLP may reflect donor lung endothelial damage and be used to predict donor lung 
outcomes.18,21 Therefore, we examined ET-1 to understand the mechanism of donor lung injury, 
predict donor lung outcomes, and overcome the current limitations of biomarker research.  
 
METHODS 
Tissue sample collection & pathway enrichment analysis   
Peripheral donor lung tissue samples were collected between 2011 and 2015 for n = 88 cases. 
The first sample was collected during donor lung preservation while on ice, referred to as pre-
EVLP. The donor lungs are then placed on EVLP for 4-6 hours. The donor lungs are placed back 
on ice following EVLP, and a second biopsy is taken, which is referred to as post-EVLP. All 
samples were snap-frozen in liquid nitrogen. RNA was isolated from tissue samples using the 
RNeasy Mini Kit (Qiagen Canada, Toronto, Canada). A nanodrop spectrophotometer (Thermo 
Fisher Scientific Canada, Ottawa, Canada) was used to assess RNA quality. The samples with 
an RNA Integrity Number above 7.0 and a concentration above 100 ng/ul proceeded to the next 
steps. Following the manufacturer’s protocol, microarrays were run on Clariom D arrays 
(Affymetrix, Santa Clara, CA) at the Princess Margaret Genomics Centre (Toronto, Canada) to 
obtain gene expression profiles. Raw microarray data was obtained from previously published 
work and is available at the Gene Expression Omnibus (GSE127055).22 A robust multi-array 
average method in R software (version 2023.09.1) was used to process and normalize the raw 
microarray data. Brainarray version 25 was used to annotate genes in R software. The ET-1 gene 
set, which contains 33 related genes was obtained from the molecular signatures database 
(MSigDB, v3.0). Gene Set Enrichment Analysis (GSEA) (version 4.3.2) was used to determine 
the enrichment of the ET-1 gene set. Single sample GSEA (ssGSEA) was performed using the 
GenePattern software (version 2.0) to evaluate the enrichment of the ET-1 gene set within a single 
sample’s expression profile.  
 
Perfusate sample collection & ELISA  
Perfusate samples were collected from the LA sampling port on the EVLP system for n = 154 
human EVLP cases. Perfusate samples were snap-frozen in liquid nitrogen and transferred to a 
-80°C freezer for later analysis. Perfusate samples were collected at 60, 90, 110, 120, 130, 150, 
and 180 minutes of EVLP. ET-1 was measured in all perfusate samples using ELISA (Protein 
Simple, San Jose, CA, USA) following the Bio-techne User Guide for ELLA (2017). ET-1 levels 
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are reported in pg/mL. The perfusate solution is removed and exchanged during EVLP. A dilution 
correction calculation was applied to all samples to account for this exchange. 
 
Time series modeling  
Seven mathematical models, including linear, quadratic, 4 parameter logistic (PL), 5PL, cubic, 
quartic, quintic mathematical models, were constructed in R software. Each mathematical model 
was fit to the ET-1 data for each case. The best fit mathematical model was determined by 
comparing the median goodness of fit (R) and adjusted R2 values as well as the Akaike 
information criterion (AIC) and the Bayesian information criterion (BIC) values were used to 
evaluate model overfitting. Features of the best fit model (coefficients and intercept) were 
inputted as univariant features into a multiple linear repression (MLR) model to evaluate the 
predictive value of time series features. Given that ET-1 is a vasoconstrictor and can increase 
pulmonary vascular resistance (PVR),24,25 PVR information was added into the MLR model. 
Similarly, hourly measures of ET-1 and PVR were inputted as univariant features into multiple 
linear repression (MLR) model to evaluate the predictive value of hourly timepoints.  

Integration into a machine learning model – InsighTx 
InsighTx, a machine-learning (ML), utilized clinical EVLP data and donor information to predict 
donor lung suitability of LTx.23 ET-1 protein levels (at 60, 120, and 180 minutes of EVLP) were 
integrated into the InsighTx model using Python Programming Language (Python Software 
(v3.9). The InsighTx model was re-trained in Python using the three new features of ET-1 along 
with the previously validated features used in the InsighTx model. An XGBoost multiclass 
classifier was re-trained in order to incorporate the new features (ET-1 hourly data) and account 
for new model weights. Leave-one-out cross-validation was used and repeated for all cases. To 
determine feature importance, SHapley Additive exPlanations (SHAP) values were determined.  

Statistical analysis 
All statistical analyses were performed in GraphPad Prism (version 10.3.0). The selection of a 
statistical test was determined by the normality of the data. Single genes and ssGSEA scores 
were analyzed using a paired Wilcoxon test. Pearson’s Chi-square test (2-sided) was used to 
assess the relationship of categorical donor data to the ssGSEA scores and END1 gene 
expression levels. A Mann-Whitney t-test was used to analyze the relationship of continuous 
donor data to the ssGSEA scores and EDN1 gene expression levels. DeLong's test for two ROC 
curves was used to compare the AUROCs. 
 
RESULTS 
Significant upregulation of the ET-1 gene set post-EVLP  
ssGSEA was used to analyze changes in the ET-1 gene set expression following EVLP using a 
paired analysis. The ssGSEA results show a significant upregulation of the ET-1 gene set post-
EVLP (p <0.0001) (Fig 1 I). GSEA was then used to determine the effect of EVLP on the ET-1 
pathway between pre- versus post-EVLP. The enrichment score (ES) for the ET-1 gene set is 
0.4242 (p = 0.17) (Fig 1 II). This indicated that the ET-1 gene set is upregulated post-EVLP 
compared to the pre-EVLP expression levels. In addition to the ES, the GSEA software 
produces a list of the core enriched genes of the ET-1 gene set. The core enriched genes are 
the genes that contributed most significantly to the enrichment of the gene set. The core 
enriched genes show a significant upregulation post-EVLP (Figure 1 III). The core enriched 
genes code for proteins which have various roles in the ET-1 pathway (Fig 1 IV). Interestingly, 
the EDN1 gene, that codes for the ET-1 protein, was the top core enriched gene.  

Clinical relevance of ET-1 gene expression  
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To assess the clinical significance of the ET-1 pathway, we analyze the relationship of the 
ssGSEA scores for the ET-1 gene set to donor characteristics. ssGSEA scores were split evenly 
into a lower (n = 44) and higher (n = 44) expression group. Donor characteristics analyzed were 
age, BMI, sex, donor types, length of CIT, and smoking status. Pre- and post-EVLP ssGSEA 
scores were analyzed in relation to various donor characteristics. Additionally, the change in the 
ssGSEA score from pre- to post-EVLP was analyzed in relation to donor characteristics. 
Interestingly, donor BMI was significantly lower when the change in the ssGSEA score was 
higher (26.05±6.42 versus 28.86±7.99, p = 0.039). A significantly higher length of CIT was seen 
when the change in the ssGSEA score was higher (12.46±2.15 versus 12.04±2.23, p = 0.018).  

ET-1 protein (EDN1) was analyzed in relation to various donor characteristics. The same 
analysis technique was performed, where the EDN1 gene expression level was split evenly into 
a lower and higher group. There was a significantly higher incidence of donor smoking use in 
the higher EDN1 expression group pre-EVLP (75.0% versus 47.4%, p = 0.019).  

Time-series modeling of ET-1 improves predictive power 
Previous unpublished work from our group shows that time series modeling of cytokine 
biomarkers improves the ability to predict post-transplant outcomes. To assess ET-1’s ability to 
predict donor lung outcomes, we applied time series modeling to ET-1 data. The quartic model 
was determined to be the best fit for the ET-1 data. Similarly, a linear model provided the best fit 
for PVR data.  
Using mathematical model features in an MLR analysis improved the ability to distinguish declined 
versus transplanted lungs (AUROC = 79.83 ± 14.46%), compared to hourly measures (AUROC 
= 65.70 ± 16.95%, p = 0.05691) (Figure 2A). For predicting recipient extubation time (≤72 versus 
>72 hours), model features significantly improved prediction (AUROC = 94.24 ± 6.32%) over 
hourly measures (62.42% ± 20.20%) (p = 0.0014) (Figure 2B).  
 
Importance of ET-1 as a biomarker to predict donor lung outcomes 
InsighTx is an ML model that utilizes clinical EVLP data, including biochemical, biological (IL-6, 
IL-8, IL-1β, and IL-10), and physiological data, as well as donor information to predict donor lung 
suitability for LTx.23 To assess the importance of ET-1 as a biomarker, we integrated ET-1 hourly 
timepoints into the InsighTx model and compared the SHAP values between features. A SHAP 
value over 0 indicates that the model learned new information from that feature, and it was 
required for the model in making its prediction, whereas a SHAP value equal to zero indicates 
that the feature was not required. ET-1 shows to be highly ranked when predicting all donor lung 
outcomes (Figure 3), especially for predicting poor recipient outcomes (Figure 3B).  
 
 
CONCLUSIONS 
This study highlights the significance of ET-1 in EVLP by demonstrating its upregulation post-
EVLP and its predictive value in lung transplant outcomes. ssGSEA and GSEA analyses 
confirmed the upregulation of the ET-1 gene set following EVLP, with core enriched genes, 
including EDN1, contributing to this effect. Notably, a greater change in ssGSEA scores from pre- 
to post-EVLP was associated with a lower donor BMI and a longer cold ischemic time. 
Furthermore, EDN1 expression was significantly associated with donor smoking history, with a 
higher prevalence of smoking in donors with elevated EDN1 expression pre-EVLP. Time-series 
modeling further emphasized the value of ET-1, as mathematical model features improved the 
prediction of lung transplant suitability and post-transplant outcomes compared to hourly 
measures. Additionally, integrating ET-1 into the InsighTx ML model revealed its importance in 
predicting donor lung suitability, particularly for poor recipient outcomes. These findings support 
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ET-1 as a critical biomarker in EVLP and reinforce the potential of advanced modeling techniques 
in improving lung transplant decision-making.  
 
 

 
 

Figure 1. Upregulation of the ET-1 gene set and single genes post-EVLP compared to pre 
EVLP levels. I) ssGSEA scores of the ET-1 gene set pre-EVLP compared to post EVLP. II) 
Gene set enrichment analysis of 33 genes in the ET-1 gene set comparing the expression from 
pre-EVLP to post-EVLP in human lung tissue. III) Gene expression levels at pre- and post-EVLP 
of A) NOS3, B) PTGIR, C) RIIAD1, D) EDN1, E) ADRB1, F) MAP2K1, and G) GNA15 and IV) 
their relation to the ET-1 pathway. Statistical analysis was done using a paired nonparametric t-
test (Wilcoxon test). Statistical significance was defined as p < 0.05, n= 88. *** p <0.001, **** p 
<0.0001.  
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Figure 2. AUROC curves for predicting A) transplant versus declined lungs and B) good 
versus poor recipient outcomes. AUROC curves using hourly timepoints of ET-1 and PVR 
and using time series features of ET-1 and PVR. Statistical analysis was done using the 
DeLong's test for two ROC curves. Statistical significance was defined as p < 0.05. ** p-value < 
0.01. 

 

 

 
Figure 3. SHAP value plots for predicting donor lung outcomes. Feature importance for 
predicting A) good recipient outcomes, B) poor recipient outcomes, and C) declined lungs.  
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INTRODUCTION 
 

Elective open surgical repair is indicated for abdominal aortic aneurysms (AAA) with 
diameters above 5.0 cm in women and 5.5 cm in men1; however, the procedure carries a high 
rate of complications2. Deery and colleagues (2016) demonstrated that major adverse events 
occur in up to 20% of patients undergoing open AAA repair and the risk is heightened for 
complex aneurysms3. As a result, the Society for Vascular Surgery (SVS) and European Society 
for Vascular Surgery (ESVS) AAA guidelines recommend careful surgical risk assessment when 
considering patients for intervention4,5.  

There are currently no standardized tools to predict complications following open AAA 
repair. A systematic review of 13 risk prediction models demonstrated significant methodological 
limitations and variable performance across different populations6. Furthermore, tools such as 
the SVS Vascular Quality Initiative (VQI) Cardiac Risk Index (CRI)7 and American College of 
Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP)8 online surgical risk 
calculators use modelling techniques that require manual input of clinical variables, which deters 
routine use in busy medical settings9. Therefore, there is an important need to develop better 
and more practical surgical risk prediction tools for patients undergoing open AAA repair.  

Machine learning (ML) is a rapidly advancing technology that allows computers to learn 
from data and make predictions10. This field has been driven by the explosion of electronic 
medical record data combined with increasing computational power11. The advantage of newer 
ML techniques over traditional statistical methods is that they can better model complex, 
multicollinear relationships between covariates and outcomes12, which is common in health care 
data13. The VQI database is a large, multicentre vascular registry that contains highly granular 
and procedure-specific variables, which is ideal for building robust ML models14. In this study, we 
used VQI data to develop ML models that can accurately predict outcomes following elective 
open AAA repair using pre-operative data. We hypothesized that ML algorithms could achieve 
better predictive performance compared to traditional statistical models such as logistic 
regression. 

 
METHODS 
 

Study approval 
The Research Advisory Council of the SVS Patient Safety Organization (PSO) approved 

this project and provided the blinded data. 
Design 
 We conducted a ML-based prognostic study and reported our findings based on the 
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis 
+ Artificial Intelligence (TRIPOD + AI) statement15.  
Dataset 

The Vascular Quality Initiative (VQI) database is a clinical registry maintained by the SVS 
PSO with the goal of improving the delivery of vascular care14. Over 1,000 academic and 
community hospitals worldwide prospectively submit demographic, clinical, and outcomes data 
on consecutive eligible vascular surgery patients, including information from their initial 
hospitalization up to 9-21 months of follow-up16. Annual audits with comparison to hospital 
claims are performed to ensure accuracy of the submitted information17.  
Patient Cohort 

All patients who underwent elective open AAA repair between January 1, 2003 and 
January 4, 2023 in the VQI database were included. Patients with ruptured or symptomatic AAA 
were excluded. 
Features 
 Given the unique advantage of ML techniques in handling large numbers of input 
features, all available pre-operative variables in the VQI database (n = 52) were used to 



16 

maximize model performance. Demographic variables included age, sex, body mass index, 
race, ethnicity, insurance status, rural residence, median area deprivation index (ADI), and 
transfer status. Comorbidities included smoking status, hypertension, diabetes, family history of 
AAA, coronary artery disease (CAD), congestive heart failure (CHF), chronic obstructive 
pulmonary disease (COPD), end stage renal disease (ESRD) requiring dialysis, and American 
Association of Anesthesiologists (ASA) classification. Other variables included previous vascular 
procedures, functional status, investigations (hemoglobin, creatinine, cardiac stress test results, 
and ejection fraction), medications, anatomic characteristics, and concurrent procedures.  
Outcomes 
 The primary outcome was in-hospital major adverse cardiovascular event (MACE), 
defined as a composite of myocardial infarction (MI), stroke, or death. MI was defined as a 
combination of clinical, electrocardiogram, and biomarker evidence of acute myocardial 
ischemia. Stroke was defined as acute, focal neurological deficits persisting for > 24 hours with 
clinical and/or imaging evidence of vascular injury to the central nervous system. Death was 
defined as all-cause mortality. In-hospital MACE was chosen as the primary outcome because 
these complications are generally directly related to open AAA repair and have an important 
impact on morbidity and mortality18,19. Secondary outcomes were 1-year mortality and 1-year 
reintervention related to the incision, graft, bowel, or lower extremity ischemia. 
Model development 
 Six ML models were trained to predict primary and secondary outcomes: Extreme 
Gradient Boosting (XGBoost), random forest, Naïve Bayes classifier, radial basis function (RBF) 
support vector machine (SVM), multilayer perceptron (MLP) artificial neural network (ANN), and 
logistic regression. These ML algorithms are widely used in the literature and demonstrate the 
best performance for predicting categorical surgical outcomes20–22. 

Our data were randomly split into training (70%) and test (30%) sets23. Ten-fold cross-
validation and grid search were performed on the training set to find optimal model 
hyperparameters24,25. To improve class balance, Random Over-Sample Examples (ROSE) was 
applied to the training set26. The models were then evaluated on unseen data in the test set and 
ranked based on discriminatory metrics, primarily area under the receiver operating 
characteristic curve (AUROC). The best performing model was XGBoost, which had the 
following optimized hyperparameters on our dataset: number of rounds = 150, maximum tree 
depth = 3, learning rate = 0.3, gamma = 0, column sample by tree = 0.6, minimum child weight = 
1, subsample = 0.9.  
Statistical analysis 
 Baseline characteristics were summarized as means (standard deviation), medians 
(interquartile range), or numbers (proportion). Differences between groups were assessed using 
independent t-tests for continuous variables or chi-square tests for categorical variables. 
Bonferroni correction was used to set statistical significance to account for multiple comparisons.  

The primary metric for assessing model performance was AUROC (95% CI). Secondary 
performance metrics were accuracy, sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). To further assess predictive performance, we plotted calibration 
curves and calculated Brier scores27. In the final model, feature importance was determined by 
ranking the top 10 predictors based on variable importance scores (gain)28. To assess model 
robustness on various populations, we performed subgroup analysis of predictive performance 
based on age, sex, race, ethnicity, rurality, socioeconomic status, proximal clamp site, prior 
aortic surgery, and concomitant procedures. 

Based on a validated sample size calculator for clinical prediction models, to achieve a 
minimum AUROC of 0.8 with an outcome rate of ~5% and 52 pre-operative features, the 
minimum sample size required is 7,274 patients with 364 events29. Our cohort of 12,027 patients 
with 630 primary events met this sample size requirement. There were less than 5% missing 
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data for variables of interest; therefore, complete-case analysis was applied30. Patients lost to 
follow-up for 1-year outcomes were censored. All analyses were performed in R version 4.2.131. 

 
RESULTS 
 

Patients, events, and follow-up 
From an initial cohort of 16,918 patients who underwent open AAA repair in the VQI 

database from 2003-2023, we excluded 2,910 patients for ruptured AAA and 1,981 patients for 
symptomatic AAA. Overall, we included 12,027 patients, and 630 (5.2%) had the primary 
outcome of in-hospital MACE. The individual components of MACE occurred in the following 
distribution: MI (n=227 [1.9%]), stroke (n=87 [0.7%]), and death (n=411 [3.4%]). For secondary 
outcomes, 1-year mortality occurred in 828 (6.9%) patients and 1-year re-intervention occurred 
in 600 (5.0%) patients. Mean follow-up was 15.3 (SD 7.7) months.  
Pre-operative demographic and clinical characteristics 

Compared to patients without a primary outcome, those who developed in-hospital 
MACE were older (mean age 73.1 [SD 7.0] vs. 69.0 [SD 8.7], p < 0.001) and more likely to be 
female (32.4% vs. 25.5%, p < 0.001). They were also more likely to have hypertension, 
diabetes, CAD, CHF, COPD, ESRD requiring dialysis, and an ASA class ≥4. Functionally, 
patients with an event were more likely to reside in nursing homes, require assistance for 
ambulation, or were wheelchair-dependent/bedridden. For investigations, patients with in-
hospital MACE had a higher mean creatinine level and were more likely to have a positive 
cardiac stress test and ejection fraction below 50%. Anatomically, patients with a primary 
outcome had a larger mean AAA diameter with a greater proportion requiring a suprarenal or 
supraceliac clamp, distal anastomosis to the common femoral artery, and concurrent 
renal/infrainguinal bypass or other abdominal surgical procedure (Table 1).  
Model performance  
 Of the 6 ML models evaluated on test set data for predicting in-hospital MACE following 
open AAA repair, XGBoost had the best performance with an AUROC (95% CI) of 0.93 (0.92-
0.94) compared to random forest [0.89 (0.87-0.90)], RBF SVM [0.85 (0.83-0.86)], Naïve Bayes 
[0.82 (0.80-0.83)], MLP ANN [0.80 (0.78-0.82)], and logistic regression [0.71 (0.70-0.73)]. The 
other performance metrics of XGBoost were the following: accuracy 0.86 (95% CI 0.84-0.87), 
sensitivity 0.84, specificity 0.87, PPV 0.88, and NPV 0.83 (Table 2). For predicting 1-year 
mortality and re-intervention, XGBoost achieved AUROC’s (95% CI) of 0.93 (0.92-0.94) and 0.84 
(0.82-0.85), respectively. 

The ROC curve for predicting in-hospital MACE using XGBoost is demonstrated in 
Figure 1. Our model achieved good calibration with a Brier score of 0.05, indicating excellent 
agreement between predicted and observed evented probabilities. The top 10 predictors of in-
hospital MACE in our XGBoost model were the following: 1) CAD, 2) ASA class, 3) proximal 
clamp site, 4) CHF, 5) prior carotid revascularization, 6) pre-operative ambulation status, 7) 
COPD, 8) older age, 9) concurrent renal bypass, and 10) pre-operative creatinine. Model 
performance remained robust on all subgroup analyses of specific demographic/clinical 
populations, with AUROC’s ranging from 0.92-0.94 and no significant differences between 
majority and minority groups. 
 
CONCLUSIONS 
 

  In this study, we used a large clinical registry to develop automated, explainable, and 
robust ML models that predict in-hospital and 1-year outcomes following open AAA repair with 
excellent performance using pre-operative data (AUROC’s ≥ 0.90). Given that our ML algorithms 
perform better than existing tools6 and logistic regression, they have potential for important utility 
in the peri-operative management of patients being considered for open AAA repair to mitigate 
adverse outcomes. Prospective validation of our prediction models is warranted.
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Table 1. Pre-operative demographic and clinical characteristics of patients undergoing 
open abdominal aortic aneurysm repair with and without in-hospital major adverse 
cardiovascular events  

 Absence of in-
hospital MACE 
(n = 11,397) 

Presence of in-
hospital MACE  
(n = 630) 

P 

Demographics    
Age, years, mean (SD) 69.0 (8.7) 73.1 (7.0) < 0.001 
Female 2,901 (25.5) 204 (32.4) < 0.001 
BMI, kg/m2, mean (SD) 27.5 (5.5) 26.9 (6.3) 0.009 
Race    

American Indian or Alaskan 
Native 

33 (0.3) 2 (0.3) 0.008 

Asian 156 (1.4) 14 (2.2) 
Black 484 (4.3) 26 (4.1) 
Native Hawaiian or other 
Pacific Islander 

11 (0.1) 4 (0.6) 

White 10,025 (88.0) 550 (87.3) 
More than 1 race 15 (0.1) 1 (0.2) 
Unknown/other 673 (5.9) 33 (5.2) 

Hispanic ethnicity 238 (2.1) 12 (1.9) 0.86 
Insurance status    

Medicare 4,386 (38.5) 277 (44.0) 0.008 
Medicaid 358 (3.1) 12 (1.9) 
Commercial 3,291 (28.9) 139 (22.1) 
Medicare Advantage 485 (4.3) 29 (4.6) 
Military/Veterans Affairs 180 (1.6) 10 (1.6) 
Non-US Insurance 672 (5.9) 38 (6.0) 
Self-pay (uninsured) 92 (0.8) 6 (1.0) 
Unknown/other 1,933 (17.0) 119 (18.9) 

Rural residence 709 (6.2) 49 (7.8) 0.12 
Area Deprivation Index 
percentile, median (IQR) 

54 (39 – 72) 54 (40 – 72) 0.74 

Transfer status    
From another hospital 391 (3.4) 16 (2.5) 0.24 
From rehabilitation unit 15 (0.1) 2 (0.3) 

Comorbidities    
Smoking status    

Never 1,068 (9.4) 48 (7.6) 0.31 
Prior 5,627 (49.4) 322 (51.1) 
Current 4,702 (41.3) 260 (41.3) 

Hypertension 9,583 (84.1) 574 (91.1) < 0.001 
Diabetes 1,886 (16.5) 142 (22.5) 0.002 
Family history of AAA 1,291 (11.3) 59 (9.4) 0.15 
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 Absence of in-
hospital MACE 
(n = 11,397) 

Presence of in-
hospital MACE  
(n = 630) 

P 

Coronary artery disease 4,149 (36.4) 317 (50.3) < 0.001 
Prior open or endovascular 
coronary revascularization 

3,388 (29.8) 246 (39.0) < 0.001 

Congestive heart failure 853 (7.5) 94 (14.9) < 0.001 
Chronic obstructive pulmonary 
disease 

   

Not treated 1,399 (12.3) 103 (16.3) < 0.001 
On medications 2,049 (18.0) 169 (26.8) 
On home oxygen 236 (2.1) 24 (3.8) 

Dialysis 59 (0.5) 9 (1.4) 0.01 
ASA Class    

1 43 (0.4) 2 (0.3) < 0.001 
2 483 (4.2) 13 (2.1) 
3 7,406 (65.0) 344 (54.6) 
4 3,448 (30.3) 270 (42.9) 
5 17 (0.1) 1 (0.2) 

Previous procedures    
Prior aortic surgery    

Infrarenal open AAA repair 250 (2.2) 23 (3.7) 0.07 
Suprarenal open AAA repair 105 (0.9) 5 (0.8) 
Aortic bypass 48 (0.4) 4 (0.6) 
Endovascular AAA repair 220 (1.9) 12 (1.9) 
Aortic endarterectomy or other 702 (6.2) 50 (7.9) 

Prior extracranial aneurysm repair 1,215 (10.7) 84 (13.3) 0.04 
Prior carotid endarterectomy or 
stent 

583 (5.1) 86 (13.7) < 0.001 

Prior bypass for peripheral artery 
disease 

463 (4.1) 48 (7.6) < 0.001 

Prior endovascular intervention 
for peripheral artery disease 

707 (6.2) 84 (13.3) < 0.001 

Prior major amputation 53 (0.5) 2 (0.3) 0.87 
Functional status    
Living status    

Home 11,329 (99.4) 623 (98.9) 0.06 
Nursing home 54 (0.5) 7 (1.1) 
Homeless 14 (0.1) 0 

Pre-operative ambulatory status    
Independent 10,797 (94.7) 572 (90.8) < 0.001 
With assistance 40 (4.7) 49 (7.8) 
Wheelchair-dependent 55 (0.5) 8 (1.3) 
Bedridden 
 

5 (0.04) 1 (0.2) 
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 Absence of in-
hospital MACE 
(n = 11,397) 

Presence of in-
hospital MACE  
(n = 630) 

P 

Investigations    
Hemoglobin, g/L, mean (SD) 137.0 (17.9) 132.0 (19.0) < 0.001 
Creatinine, umol/L, mean (SD) 95.8 (37.9) 108.0 (53.7) < 0.001 
Cardiac stress test    

Not done 4,912 (43.1) 270 (42.9) 0.02 
Normal 5,211 (45.7) 265 (42.1) 
Positive for ischemia 716 (6.3) 49 (7.8) 
Positive for infarction 423 (3.7) 33 (5.2) 
Positive for ischemia and 
infarction 

135 (1.2) 13 (2.1) 

Ejection fraction    
< 30% 108 (0.9) 9 (1.4) < 0.001 
30-50% 1,083 (9.5) 87 (13.8) 
> 50% 6,987 (61.3) 397 (63.0) 
Not done 2,430 (21.3) 98 (15.6) 
Unknown 789 (6.9) 39 (6.2) 

Medications    
Acetylsalicylic acid 7,395 (64.9) 438 (69.5) 0.02 
P2Y12 antagonist 936 (8.2) 97 (15.4) < 0.001 
Statin 8,320 (73.0) 474 (75.2) 0.24 
Beta blocker 6,915 (60.7) 432 (68.6) < 0.001 
ACE-I/ARB 4,453 (39.1) 282 (44.8) 0.005 
Anticoagulant 905 (7.9) 63 (10.0) 0.08 

Anatomic characteristics and 
procedural planning variables 

   

Maximum AAA diameter, cm, 
mean (SD) 

6.0 (1.6) 6.2 (1.5) 0.001 

Concomitant iliac artery 
aneurysm 

   

Unilateral 1,429 (12.5) 63 (10.0) 0.15 
Bilateral 1,842 (16.2) 100 (15.9) 

Surgical exposure    
Transperitoneal 8,185 (71.8) 446 (70.8) 0.86 
Retroperitoneal 3,124 (27.4) 179 (28.4) 
Not reported 88 (0.8) 5 (0.8) 

Proximal graft diameter, mm, 
median (IQR) 

18 (16 – 20) 18 (16 – 20) 0.91 

Proximal clamp site    
Infrarenal 6,287 (55.2) 287 (45.6) < 0.001 
Above 1 renal artery 1,610 (14.1) 90 (14.3) 
Above both renal arteries 2,595 (22.8) 181 (28.7) 
Supraceliac 711 (6.2) 63 (10.0) 
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 Absence of in-
hospital MACE 
(n = 11,397) 

Presence of in-
hospital MACE  
(n = 630) 

P 

Not reported 194 (1.7) 9 (1.4) 
Distal anastomosis    

Aorta 4,566 (40.1) 219 (34.8) < 0.001 
Common iliac artery 4,421 (38.8) 230 (36.5) 
External iliac artery 998 (8.8) 47 (7.5) 
Common femoral artery 1,238 (10.9) 115 (18.3) 
Not reported 174 (1.5) 19 (3.0) 

Concurrent procedures    
Renal bypass 542 (4.8) 51 (8.1) < 0.001 
Infrainguinal bypass 230 (2.0) 29 (4.6) < 0.001 
Other abdominal procedure 1,036 (9.1) 86 (13.7) < 0.001 

 
Values are reported as No. (%) unless otherwise indicated. Abbreviations: MACE (major adverse 
cardiovascular event), AAA (abdominal aortic aneurysm), BMI (body mass index), ACE-I 
(angiotensin converting enzyme inhibitor), ARB (angiotensin II receptor blocker), ASA 
(American Association of Anesthesiologists), SD (standard deviation), IQR (interquartile range). 
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Table 2. Model performance on test set data for predicting in-hospital major adverse 
cardiovascular events following open abdominal aortic aneurysm repair using pre-
operative features  

 AUROC  
(95% CI) 

Accuracy 
(95% CI) 

Sensitivity Specificity PPV NPV 

XGBoost 0.93  
(0.92 – 0.94) 

0.86  
(0.84 – 0.87) 

0.84 0.87 0.88 0.83 

Random forest 0.89  
(0.87 – 0.90) 

0.80  
(0.79 – 0.81) 

0.82 0.78 0.77 0.83 

RBF SVM 0.85  
(0.83 – 0.86) 

0.76  
(0.75 – 0.78) 

0.75 0.78 0.80 0.73 

Naïve Bayes 0.82  
(0.80 – 0.83) 

0.82  
(0.80 – 0.83) 

0.80 0.84 0.85 0.78 

MLP ANN 0.80  
(0.78 – 0.82) 

0.79  
(0.77 – 0.81) 

0.77 0.83 0.86 0.72 

Logistic 
regression 

0.71  
(0.70 – 0.73) 

0.62  
(0.60 – 0.64) 

0.59 0.73 0.66 0.58 

 
Abbreviations: XGBoost (Extreme Gradient Boosting), AUROC (area under the receiver 
operating characteristic curve), CI (confidence interval), PPV (positive predictive value), NPV 
(negative predictive value), RBF SVM (radial basis function support vector machine), MLP 
ANN (multilayer perceptron artificial neural network). 
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Figure 1. Receiver operating characteristic curve for predicting in-hospital major adverse 
cardiovascular events following open abdominal aortic aneurysm repair using Extreme 
Gradient Boosting (XGBoost) model. AUROC (area under the receiver operating characteristic 
curve), CI (confidence interval). 

  

AUROC 0.93  
(95% CI 0.92 – 0.94)  
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INTRODUCTION 
Mass casualty incidents (MCI) are disasters (e.g. natural disasters, explosions, chemical spills, 
plane crashes, terrorist attacks, military conflict) that overwhelm the local healthcare system and 
management agencies. MCIs require prompt assessment, triaging and transfer of patients to the 
hospital that is best equipped to accommodate the myriads of potential injuries. Decision-making 
by MCI commanders can be particularly challenging as they attempt to make critical decisions in 
a timely fashion while attempting to coordinate with the multiple team members at the disaster 
site and destination hospitals. This requires detailed understanding of patient factors (e.g. number 
of victims, mechanisms/types of injuries), hospital factors (e.g. distance from MCI site, available 
ICU beds/operating rooms/surgeons/ventilators) and transportation factors (e.g. available 
ambulances, helicopters) to optimize transfer decisions and patient outcomes. Given the relative 
rarity and uniqueness of each MCI, training healthcare workers in MCI response decision-making 
is limited mostly to tabletop simulation exercises. There is therefore a need for innovative 
methodologies for improving decision-making for MCI in a cost-effective and scalable manner. 
One potential solution is through the use of digital solutions and intelligent systems for providing 
end-users with simulation-based training and decision-support. 
We aimed to 1) develop a novel digital platform to simulate MCI events, 2) train and validate an 
artificial intelligence (AI) algorithm that provides decision-support to accelerate and optimize 
patient transfer decision, and 3) determine whether it improves decisions amongst both trauma 
experts and non-experts in a simulated environment.  
 
METHODS 
Simulation Platform 
MasTER (Mass-Casualty Trauma and Emergency Response) is an intelligent human-in-the-loop 
command dashboard accessible as a web application that simulates MCIs and provides end-
users with a virtual environment to make transfer decisions (Figure 1). On the platform, users can 
assess the various trauma patients, injury mechanism, injury severity classification according to 
accepted standards for MCI, as well as the potential hospitals they can transfer to, including travel 
time and the various resources at each site (e.g. availability of intensive care unit beds, operating 
rooms, ventilators, blood products, etc.). The platform was designed to be capable of simulating 
MCIs in any geographic location, any combination of total number of trauma victims, injury 
mechanism/severity, available institutions and resources at each site. To optimize the fidelity of 
the simulation environment, the identification of trauma victims, and availability of transportation 
vehicles and hospital resources follows a sigmoid relationship as time progresses. Users can 
assign patients to be transferred to specific hospitals either through direct drag-and-drop function 
or by requesting AI-generated suggestions, which can be accepted or declined. 
Machine Learning Model 
To facilitate patient transfer decisions, an AI algorithm we trained using deep reinforcement 
learning (DRL). DRL [1] is a machine learning paradigm that enables continuous learning through 
trial-and-error interactions with complex simulated environments while optimizing long-term 
outcomes. This approach proves advantageous when structured training data are limited and has 
shown utility in healthcare setting [2,6,7,8]. Deep Learning (DL) [3] employs multi-layered artificial 
neural networks to extract high-dimensional features and generate predictions. DRL [4], on the 
other hand, combines the strengths of both, presenting an effective solution through its capacity 
for ongoing adaptation in complicated scenarios. DRL's capability to manage high-dimensional 
state and action spaces aligns with the multifaceted nature of MCIs, while simulation addresses 
the scarcity of organized historical incident information. For this model, we chose a Proximal 
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Policy Optimization (PPO)-based DRL approach [5] for MasTER’s algorithm. The AI agent was 
trained on extensive simulated MCI scenarios (n=10,000), representing diverse casualty volumes 
(ranging from 10-500 patients), injury patterns, and regional hospital resource configurations. The 
modelling of simulated MCIs strictly follows the existing rapid trauma triage protocols, such as 
color codes for patient severity and levels for hospital capability [14]. At its core, the agent optimized 
a multi-objective reward function prioritizing survival probability while considering transport 
duration, facility capacity constraints, and specialty care requirements. Once the model was 
developed, it was integrated into the simulation platform as an add-on feature where end-users 
can summon the model to provide a recommendation on the optimal destination hospital for any 
given patient. 
Validation 
To evaluate whether MasTER facilitates MCI management, we conducted user studies using two 
distinct simulation exercises: a Standard level (20 patients) and Complex level (60 patients), both 
in the Greater Toronto Area. Users participated in both simulation in two iterations: 1) Human-
only (no AI available to assist) and 2) Human+AI (human-in-the-loop approach where AI 
assistance was available at their discretion). In the Human+AI setting, participants could request 
AI-generated suggestions for patient assignments which they could either accept or decline. We 
also tested the AI model as a standalone fully autonomous agent making decisions (AI-only). 
Participants (including trauma surgeons and non-trauma surgeons) were recruited to complete 
the Human-only and Human+AI simulations. Prior to starting the simulation exercises, all 
participants underwent a training module to gain familiarity with the platform. 
Outcomes 
Our evaluation framework incorporated both quantitative and qualitative measures to provide a 
comprehensive assessment of the MasTER platform. The system automatically collected 
quantitative metrics including total completion time and patient survival rates. Survival and 
mortality were determined according to preestablished benchmarks for given injury severity 
requiring transfer to specific hospitals with the necessary resources within a given time frame. For 
the Human+AI condition, we tracked the acceptance rate of AI suggestions to understand user 
trust and system reliance. For qualitative assessment, we measured workload using the NASA 
Task Load Index (NASA-TLX) [9] and system usability via the System Usability Scale (SUS) [10]. 
We also assessed user perception on the utility and value of the tool. These post-condition 
evaluations captured immediate impressions and experiences while minimizing recall bias. All 
questionnaires were administered and collected via REDCap [11, 12]. 
 
RESULTS  
There was a total of 30 participants, including 6 expert trauma surgeons from a high-volume Level 
1 trauma hospital, and 24 non-experts. For the entire cohort, there were significant differences 
across conditions (Human-only, Human+AI, and AI-only) for all performance metrics. For 
completion time (Figure 3a), repeated measures ANOVA [13] showed a significant main effect 
(F(2,87) = 892.31, p < .001, η²p = .943). Post-hoc Tukey's HSD tests indicated significant 
differences between all pairs of conditions (p < .001). The Human+AI condition demonstrated 
substantially improved performance compared to the Human-only condition (d = 4.72, 95% CI 
[4.23, 5.21]). There was a significant improvement in simulated mortality rates (Figure 3b), using 
AI assistance for the Standard level (t(29) = 7.82, p < .001; Human: M = 1.00%, SD = 2.03%; 
Human+AI: M = 0.17%, SD = 0.91%). This improvement was even more pronounced during 
Complex scenarios where there were more patients to be traiged (t(29) = 11.23, p < .001; Human: 
M = 6.37%, SD = 1.71%; Human+AI: M = 2.83%, SD = 1.02%). Match rates (Figure 3c) similarly 
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improved with AI assistance, with the Standard level achieving near-perfect scores in the 
Human+AI condition (M = 98.13%, SD = 0.31%) compared to Human-only (M = 90.07%, SD = 
2.76%; t(29) = 15.82, p < .001). Error rates (Figure 3d) showed consistent improvement across 
both difficulty levels, with the Human+AI condition reducing errors by 42.3% in the Standard level 
(t(29) = 16.34, p < .001) and 71.2% in the Complex level (t(29) = 19.87, p < .001) compared to 
Human-only. The AI-only condition achieved near-perfect scores across all metrics, establishing 
a theoretical performance ceiling.  
When analyzing expert versus non-expert performance, we found that non-experts were unable 
to match experts' performance in the Human-only condition across all metrics. However, when 
provided with AI assistance (the Human+AI condition), non-experts demonstrated remarkable 
improvement, achieving metrics that surpassed experts' Human-only performance.  
Qualitative analysis of NASA-TLX scores indicated significantly lower perceived workload in the 
Human+AI condition (M = 31.4, SD = 3.85) compared to Human-only (M = 63.7, SD = 7.2; t(29) 
= 17.92, p < .001). The System Usability Scale (SUS) score for the Human+AI system was 
exceptional at 87.87 (SD = 2.54), placing it in the 95th percentile of evaluated systems. 
 
Discussion 
In simulated MCI, the use of the AI model significantly improved triage decisions, with substantial 
mortality rate reductions (83% for the Standard level, 55.6% for the Complex level; p < .001) and 
error rate reductions (42.3-71.2%). The large effect size for completion time (d = 4.72) shows both 
statistical and practical significance. The DRL model performed even better autonomously than 
with human intervention. Furthermore, MasTER's features demonstrated strong utility, with 
NASA-TLX scores showing 50.7% reduced workload (p < .001) and exceptional usability (SUS: 
87.87, 95th percentile). Features provided crucial support in complex scenarios, particularly in the 
Complex level where there are many victims and decisions become extremely challenging (error 
reduction: p < .001). Finally, trauma experts generally found MasTER useful, robust, and efficient, 
as evidenced by high satisfaction scores and significant time improvements (25.49% faster for 
the Standard level, 45.35% for the Complex level; p < .001). Low error rates in Human+AI 
condition (71.2% reduction in the Complex level) indicate that this system could be effectively 
integrated into existing workflows. 
 
CONCLUSIONS 
We developed a novel web application simulation platform with AI decision-support (MasTER) 
and showed that it significantly improves decision-making metrics within a simulated 
environment while reducing cognitive burden during MCI management. Moreover, our study 
demonstrates that increasing AI involvement produces better, more stable, and predictable 
transfer decisions. While MasTER could successfully address current MCI management 
challenges, future development should incorporate more comprehensive resources (e.g., 
neurosurgery availability, helicopter transportation option), balance workload between same-
level hospitals, automation of input for patient profiles and hospital resources, and conduct 
longitudinal studies to assess patient and system outcomes.  
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Figure 1  (Top) The user interface of MasTER has 6 major components: ❶ Jurisdiction Selector enables 
hierarchical navigation of geographical responsibility areas with radius-based refinement; ❷ Notifications 
delivers color-coded, timestamped updates on system events for quick assessment; ❸ Status Bar provides real-
time metrics including elapsed time, unassigned patients by severity, mortality count, and available 
ambulances; ❹ Detail Panel displays comprehensive information about selected patients (severity, injuries, 
resource needs) or hospitals (level, capabilities, distance); ❺ Interactive Map visualizes incident site and 
hospitals with multiple viewing options for improved spatial awareness.; ❻ Draggable Action Panel presents 
two synchronized lists: unassigned patients and hospitals in the selected jurisdiction by default. Patients are 
color-coded by severity (Critical in red, Severe in yellow, Minor in green, and Deceased in gray), while hospitals 
are differentiated by their trauma level (Level 1-3). Users can assign patients either through direct drag-and-
drop interactions or by requesting AI-generated suggestions, which can be accepted or declined; (Bottom) an 
example of AI suggestion is given.  
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Figure 2 Procedure of the user study. 

Figure 3 Quantitative results from the user study. 
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