

ABG Interpretation: A Respirologist's approach

Dr. Shane Shapera Division of Respirology University Health Network October 2014

Outline

- · A quick review of acid-base physiology
- The 8 steps to ABG interpretation
- Discuss the causes of hypoxemia and hypercapnea

What use is an ABG?

- Assess acid-base balance
- · Assess adequacy of ventilation
- Assess oxygenation

Acid-Base Disturbances

- Acidosis = process that makes the blood acidic
- · Alkalosis = process that makes the blood alkaline
 - This is a diagnosis
 - Mutliple disorders can exist simultaneously
- Acidemia = blood pH below 7.35
- Alkalemia = blood pH above 7.45
 - This is a sign
- Net result of all concurrent disorders

Two kinds of pH disorders

- 1. "Respiratory" = 1° abnormality in ventilation (CO2)
- 2. "Metabolic" = 1º abnormality in any other acid or base

Acid-Base Disturbances

- When acidosis or alkalosis occurs, the body tries to normalize pH by "compensating" using buffers
 - If the primary process is metabolic,
 - We use lungs to increase or decrease ventilation to alter $p_{\rm a}\text{CO2}$ This "respiratory compensation" takes minutes
 - If the primary process is respiratory,
 - We use kidneys to excrete either acid (NH4) or base (NaHCO3)
 - This "metabolic compensation" takes hours or days
- Compensation is always in the same direction as the primary problem $-\,$ If p_aCO2 rises, appropriate compensation increases HCO3- $\,$
 - If paCO2 falls, appropriate compensation decreases HCO3-
 - If HCO3- rises, appropriate compensation increases p_aCO2
 - If HCO3- falls, apppropriate compensation decreases $p_{\rm a}\text{CO2}$

Alveolar Ventilation

- CO2 is normally tightly regulated
 Small changes to CO2 alter ventilation
- Carotid body is essential to this regulation
- This is a cluster of chemoerceptors in the carotid artery
- Detects levels of [O2], [CO2] and [H+]
- Sends signals to the brain
- Alters ventilation in response to [CO2] and [H+]
- Carotid body response:
 - When patient has acidemia (low pH)
 Carotid body makes you more sensitive to [CO2] = ↑ ventilation
 - When patient has alkalemia (high pH)
 - Carotid body makes you less sensitive to [CO2] = ↓ ventilation

- Diuretics
- Hyperaldosteronism

Metabolic Acidosis

- Two possible mechanisms of onset – Loss of HCO3-
 - Gain of H+
- Mechanisms of compensation are a bit more complex

- ASA (acetylsalicylic acid)

Step 3: What is the compensation?				
 Then look at HCO₃- Has it changed by the expected amount? It doesn't have to be "perfect" Change in HCO3⁻ can tell you if the disorder is acute or chronic Whether multiple disorders are present 				
	Δp _a CO2	Δ HCO3-		
Acute Respiratory Acidosis	↑ 10	<u>↑</u> 1		
Acute Respiratory Alkalosis	↓ 10	↓ 2		
Chronic Respiratory Acidosis	↑ 10	↑ 3		
Chronic Respiratory Alkalosis	↓ 10	↓ 4		
Metabolic Alkalosis	↑ 0.7	<u>↑</u> 1		
Metabolic Acidosis	↓ 1	↓ 1		
		•7.30 / 80 / 45 / 38		

Step 3: What is the compensation?

- · If compensation is "right", there is one process
- If compensation doesn't "fit", there may be more than one process going on

	Δ p _a CO2	Δ HCO3-
Acute Respiratory Acidosis	↑ 10	↑1
Acute Respiratory Alkalosis	↓ 10	↓ 2
Chronic Respiratory Acidosis	↑ 10	<u>↑</u> 3
Chronic Respiratory Alkalosis	↓ 10	↓ 4
Metabolic Alkalosis	↑ 0.7	<u>↑</u> 1
Metabolic Acidosis	↓ 1	↓1
		•7.30 / 80 / 45 / 38

Anion Gap – DDx

- Medical student answer
 MUDPILES
- · Real life answer...
 - Lactic acidosis
 - Ketosis (DKA, starvation, alcohol)
 - Renal failure
 - Poison (alcohols, ASA, cyanide)

Step 5: <u>If</u> an Anion Gap is present, is it the only process?

- Each molecule of unmeasured anion (ie. Lactate) donates a H+ which binds to HCO3-
- H⁺ + HCO3⁻ → H20 and CO2
- · Therefore, if there is only one process,
 - Amount of added acid = the increase in H+ = the fall in HCO3-
 - The amount of added acid is measured using the anion gap
 - $-\,$ So, the change in Anion Gap should equal the change in HCO3-

Step 5: <u>If</u> an Anion Gap is present, is it the only process?

Calculate ΔAG/ΔHCO3- ratio

 ΔAG = measured AG – 12

 Δ HCO3- = 24 – measured HCO3-

•7.30 / 80 / 45 / 38

Step 5: If an Anion Gap is present, is it the only process?

- Calculate ΔAG/ΔHCO3- ratio
- If $\Delta AG/\Delta HCO3$ ratio = 1 \rightarrow no other process
 - Ratio > 1, HCO3 is too low → concomitant non-AG acidosis
 - Ratio < 1, HCO3 is too high → concomitant alkalosis

•7.30 / 80 / 45 / 38

Step 6: Determine the **Osmolar (OSM) Gap**

- OSM gap = measured OSM calculated OSM
 - Measured OSM: given by the lab
 - Calculated OSM = (2 x Na⁺) + BG + BUN · "Two salts and a sugar bun."
- Normal Osmolar gap < 10

Step 6: Determine the Osmolar (OSM) Gap

- DDx of a high osmolar gap
 - Methanol*
 - Ethylene glycol*
 - Ethanol
 - Mannitol
 - Acetone
 - Isopropyl alcohol
 - Others...

* Anion gap AND osmolar gap

Step 7: Calculate the A-a gradient

- A-a gradient = PAO2 PaO2
- PAO2 = [(Pbar PH20) x FiO2] [PaCO2/RQ] = [(760 - 47) x FiO2] - [PaCO2/RQ] = [(713) x FiO2] - [PaCO2/RQ]
- PaO2 = measured with ABG

•7.30 / 80 / 45 / 38

Step 7: Calculate the A-a gradient

- PAO2 = [(Pbar PH20) x FiO2] [PaCO2/RQ] A-a = PAO2 - PaO2
- $\begin{array}{l} Aa = PAO2 PaO2 \\ A-a = [(Pbar PH20) \times FiO2] [PaCO2/RQ] PaO2 \\ A-a = [(Pbar PH20) \times FiO2] [PaCO2 / 0.8] PaO2 \\ A-a = [(760 47) \times 0.21] [1.25 \times PaCO2] PaO2 \\ A-a = [(713) \times 0.21] [1.25 \times PaCO2] PaO2 \\ A-a = [150] [1.25 \times PaCO2] PaO2 \\ \end{array}$

•7.30 / 80 / 45 / 38

Step 7: Calculate the A-a gradient

- Normal A-a gradient
 - A-a gradient < 10 is normal
 - A-a gradient is higher in elderly (up to 20)

Step 8: Causes of hypoxemia

- · List the 5 major causes of hypoxemia
- · Which have a normal A-a gradient?
- Which have a high A-a gradient?

Step 8: Causes of hypoxemia

- 1. Low inspired O2 content (low FiO2 or low PiO2)
- 2. Hypoventilation
- 3. V/Q mismatch
- Asthma, COPD, Alveolar filling (fluid, blood, pus), pHTN
 Shunt
- Anunt

 Physiologic shunt
 - Intra-cardiac (ASD, PFO or VSD)
 - Intra-pulmonary
 - With normal capillaries: atelectasis or consolidation
 - With abnormal capillaries: pAVM's or HPS
- 5. Diffusion abnormality - Severe ILD, severe COPD, etc...

Summarize this ABG

- · Step 1: Get the ABG
- Step 2: Determine primary abnormality
- · Step 3: What is the compensation
- · Step 4: Assess the anion gap
- · Step 5: Is the anion gap the only process
- Step 6: Calculate the osmolar gap
- · Step 7: Calculate the A-a gradient
- Step 8: Cause of hypoxemia

7.30 / 80 / 45 / 38 <u>140 | /</u> 3.6

100 | 35 \ 85

Summarize this ABG

- · Step 1: done
- · Step 2: chronic respiratory acidosis
- Step 3: compensated appropriately (10:3.5)
- Step 4: anion gap = 5 (normal)
- · Step 5: no anion gap present
- Step 6: osmolar gap (can't do)
- Step 7: A-a gradient = 5 (normal)
- · Step 8: hypoxemia due to hypoV

7.30/80/45/38

 $\frac{140}{100} / 3.6$

Causes of Hypercapnia

- · What are the determinants of PaCO2?
- PaCO2 = (VCO2) / RR (Vt-Vd) x K
 - CO2 production
 - Respiratory rate
 - Tidal volume
 - Dead space volume

Causes of Hypercapnia PaCO2 = (VCO2) / RR (Vt-Vd) x K

- High VCO2 – fever, sepsis, seizures
- · Low RR
 - drugs, brainstem lesions, hypothyroid
- Low Vt
 - muscle weakness (rapid shallow breathing pattern), neuromuscular disease, low chest wall compliance
- High Vd – ARDS, PE, COPD

Back to the case

- You get a call from a your clinical clerk...
 - "I need your input on Ms. K. She is a 65 year old woman who is here for a small bowel obstruction. Med consults is following her for long standing back pain and they are working her up for possible cancer."
- ABG (pH/PaCO2/PaO2/HCO3-)

7.30 / 80 / 45 / 38

- You diagnose a chronic respiratory acidosis with a normal A-a gradient due to hypoventilation
 - You remove the fentanyl patch from her arm
 - You transfer her to the ICU

Back to the case

- 15 minutes later
- Patient arrives in ICU
- RT feels patient is worse
- ABG: 7.30 / 80 / 30 / 38
 What happened?

Baseline ABG: 7.30 / 80 / 45 / 38

Back to the case: DDx of acute rise in A-a gradient

- V/Q mismatch
 - Aspiration pneumomitis
 - Flash pulmonary edema
 - Mucous plug
 - Pneumothorax
 - PE
 - (ARDS)

Review: ABG interpretation in 8 steps

- · Step 1: Get the ABG
- Step 2: Determine primary abnormality
- · Step 3: What is the compensation
- Step 4: Assess the anion gap
- · Step 5: Is the anion gap the only process
- · Step 6: Calculate the osmolar gap
- · Step 7: Calculate the A-a gradient
- · Step 8: Causes of hypoxemia