8 Steps to ABG Interpretation

Step 1) Obtain ABG and lytes:

- If you don't perform the test, you'll never know what is going on with the patient

Step 2) Determine the primary process:

- Is it an acidosis or an alkalosis?
- Is the primary problem respiratory or metabolic?

Step 3) What is the compensation? Is there another process influencing the acid-base status?

- Look at the HCO3 and decide if it has changed by the expected amount
- If the change in HCO 3 doesn't fit with the numbers on the table, there may be a second process

Primary Disorder	$\boldsymbol{\Delta} \mathbf{p}_{\mathbf{a}} \mathbf{C O 2}$	$\mathbf{\Delta} \mathbf{H C O 3}-$
Acute Respiratory Acidosis	$\uparrow 10$	$\uparrow 1$
Acute Respiratory Alkalosis	$\downarrow 10$	$\downarrow 2$
Chronic Respiratory Acidosis	$\uparrow 10$	$\uparrow 3$
Chronic Respiratory Alkalosis	$\downarrow 10$	$\downarrow 4$
Metabolic Alkalosis	$\uparrow 0.7$	$\uparrow 1$
Metabolic Acidosis	$\downarrow 1$	$\downarrow 1$

Step 4) Determine the Anion Gap:

- This must be done even if it doesn't look like a metabolic acidosis
- Anion Gap $=\mathrm{Na}+-\left[\mathrm{HCO}_{3}-+\mathrm{Cl}-\right] \rightarrow$ normal <12
- DDx of increased Anion Gap (MUDPILES)
- Methanol, Uremia, DKA (or other ketoacidoses - starvation/etOH), Paraldehyde, INH/iron, Lactic acid, Ethylene Glycol, Salicylates
- Real life DDx:
- Lactic acidosis
- Ketosis (DKA, starvation, alcohol)
- Renal failure
- Poisons (alcohols, ASA, cyanide)

Step 5) If an Anion Gap is present, is it the only process?

- Measure the $\Delta \mathrm{AG} / \Delta \mathrm{HCO}_{3}$ - ratio
- If the ratio $=1$, then the AG is the only process
- If the ratio $\neq 1$, then there is another process
- If ratio $>1, \mathrm{HCO}_{3}$ - is too low, there is a concomitant non-AG acidosis
- If ratio $<1, \mathrm{HCO}_{3}$ - is too high, there is a concomitant alkalosis

Step 6) Determine the Osmolar Gap

- Osmolar gap $=$ measured osmolality - calculated osmolality \rightarrow normal <10
- Mesured Osm: given to you by the lab
- Calculated Osmolality $=2 x[\mathrm{Na}+]+$ glucose + urea
- " 2 salts and a sugar bun"
- DDx of increased Osmolar gap = ALCOHOLS
- Methanol, Mannitol, Acetone, EtOH, isopropyl EtOH, Ethylene glycol, others
- Combined AG and Osmolar gap = Methanol or Ethylene glycol

Step 7) Determine the A-a gradient

- A-a gradient
- A-a gradient $=\mathrm{PAO}_{2}($ calculated $)-\mathrm{PaO}_{2}$ (measured)
- Normal A-a gradient is < 10
- How do you calculate the PA_{2} ?
- $\mathrm{PAO}_{2}=(\mathrm{Pbar}-\mathrm{PH} 20) \times \mathrm{Fi} 02-\left(\mathrm{PaCO}_{2} \times 1.25\right)$
- For patients on room air the formula can be simplified to:
- A-a gradient $=\mathrm{PA} 02-\mathrm{Pa} 02$
$=150-(\mathrm{PaC} 02 \times 1.25)-\mathrm{Pa} 02$
- For patients on Oxygen, you need to use the full formula:

$$
\begin{aligned}
\therefore \text { A-a gradient } & =\mathrm{PA} 02-\mathrm{Pa} 02 \\
& =(\mathrm{Pbar}-\mathrm{PH} 20) \times \mathrm{Fi} 02-\left(\mathrm{PaCO}_{2} \times 1.25\right)-\mathrm{Pa} 02 \\
& =(713 \times \mathrm{Fi} 02)-(\mathrm{PaC} 02 \times 1.25)-\mathrm{Pa} 02
\end{aligned}
$$

Step 8) DDx of hypoxemia

- Normal A-a gradient (<10)
- Low inspired O2 content (low FiO2 or low PiO2)
- Hypoventilation
- Increased A-a gradient (>10)
- V/Q mismatch
- Asthma, COPD, Alveolar filling (fluid, blood, pus), pulmonary vascular disease
- Shunt
- Physiologic shunt
- Intra-cardiac (ASD, PFO or VSD)
- Intra-pulmonary
- With normal capillaries: atelectasis or consolidation
- With abnormal capillaries: p AVM's or intrapulmonary vasodilatation in HPS
- Diffusion abnormality
- Severe ILD, severe COPD, etc...

