8 Steps to ABG Interpretation

Step 1) Obtain ABG and lytes:

- If you don't perform the test, you'll never know what is going on with the patient

Step 2) Determine the primary process:

- Is it an acidosis or an alkalosis?
- Is the primary problem respiratory or metabolic?

Step 3) What is the compensation? Is there another process influencing the acid-base status?

- Look at the HCO3 and decide if it has changed by the expected amount
- If the change in HCO3 doesn't fit with the numbers on the table, there may be a second process

Primary Disorder	Δ p _a CO2	Δ НСО3-
Acute Respiratory Acidosis	↑ 10	↑ 1
Acute Respiratory Alkalosis	↓ 10	↓ 2
Chronic Respiratory Acidosis	↑ 10	↑ 3
Chronic Respiratory Alkalosis	↓ 10	↓ 4
Metabolic Alkalosis	↑ 0.7	↑ 1
Metabolic Acidosis	↓ 1	↓ 1

Step 4) Determine the Anion Gap:

- This must be done even if it doesn't look like a metabolic acidosis
- Anion Gap = Na+ [HC 0_3 + Cl-] \rightarrow normal < 12
- DDx of increased Anion Gap (MUDPILES)
 - o Methanol, Uremia, DKA (or other ketoacidoses starvation/etOH), Paraldehyde, INH/iron, Lactic acid, Ethylene Glycol, Salicylates
 - o Real life DDx:
 - Lactic acidosis
 - Ketosis (DKA, starvation, alcohol)
 - Renal failure
 - Poisons (alcohols, ASA, cyanide)

Step 5) If an Anion Gap is present, is it the only process?

- Measure the $\triangle AG/\triangle HC0_3$ ratio
 - \circ If the ratio = 1, then the AG is the only process
 - \circ If the ratio $\neq 1$, then there is another process
 - If ratio > 1, HCO₃- is too low, there is a concomitant non-AG acidosis
 - If ratio < 1, HCO₃- is too high, there is a concomitant alkalosis

Step 6) Determine the Osmolar Gap

- Osmolar gap = measured osmolality calculated osmolality \rightarrow normal < 10
- Mesured Osm: given to you by the lab
- Calculated Osmolality = 2x[Na+] + glucose + urea
 - o "2 salts and a sugar bun"
- DDx of increased Osmolar gap = ALCOHOLS
 - o Methanol, Mannitol, Acetone, EtOH, isopropyl EtOH, Ethylene glycol, others
 - Combined AG and Osmolar gap = Methanol or Ethylene glycol

Step 7) Determine the A-a gradient

- A-a gradient
 - \circ A-a gradient = PA0₂ (calculated) Pa0₂ (measured)
 - Normal A-a gradient is < 10
- How do you calculate the PAO₂?
 - \circ PA0₂ = (Pbar PH20) x Fi02 (PaC0₂ x 1.25)
- For patients on room air the formula can be simplified to:
 - \circ A-a gradient = PA02 Pa02 = 150 - (PaC02 x 1.25) - Pa02
- For patients on Oxygen, you need to use the full formula:
 - \circ A-a gradient = PA02 Pa02 = (Pbar - PH20) x Fi02 - (PaC0₂ x 1.25) - Pa02 = (713 x Fi02) - (PaC02 x 1.25) - Pa02

Step 8) DDx of hypoxemia

- Normal A-a gradient (<10)
 - o Low inspired O2 content (low FiO2 or low PiO2)
 - Hypoventilation
- Increased A-a gradient (>10)
 - o V/Q mismatch
 - Asthma, COPD, Alveolar filling (fluid, blood, pus), pulmonary vascular disease
 - Shunt
 - Physiologic shunt
 - Intra-cardiac (ASD, PFO or VSD)
 - Intra-pulmonary
 - With normal capillaries: atelectasis or consolidation
 - With abnormal capillaries: p AVM's or intrapulmonary vasodilatation in HPS
 - o Diffusion abnormality
 - Severe ILD, severe COPD, etc...