Surgical Foundations Lecture Series

Perioperative Pain Management

November 5, 2019

Stephen Chan, MD, FRCPC
Staff Anesthesiologist, St. Michael’s Hospital
Lecturer, University of Toronto
Stephen.Chan@unityhealth.to
Disclosures

• None
Outline

• Patient Cases
• Why treat pain?
• Pain Assessment
• Methods to Treat Pain
 – Multimodal Analgesia
 – Medications
 – Regional Anesthesia
• Management of Side Effects
• Challenges
• Warning Signs
• Overdose Management
• Acute Pain Service
Case 1

- 85 year old female
 - Laparotomy for bowel resection
 - PMH: CAD, previous MI, renal insufficiency

- What are your options for perioperative pain management?

- Any treatments/Rx to avoid?
Case 2

• 60 year old with Crohn’s disease
 – for laproscopic bowel resection
 – PMH: Chronic leg pain from previous MVA

• How are you going to manage his pain?

• POD#2, the patient has an significant increase in leg pain – what do you do?
Why Treat Perioperative Pain?

- ↓ pain and suffering
- ↓ complications
- ↓ likelihood of chronic pain development
- ↑ patient satisfaction
- ↑ speed of recovery → ↓ length of stay → ↓ cost
- ↑ productivity and quality of life
Adverse Effects of Poor Pain Management

- Cardiovascular
- Respiratory
- Gastrointestinal / Genitourinary
- Neuroendocrine / Metabolic
- Musculoskeletal
- Immunological
- Psychological
Consequences of Poor Pain Control

• Increased suffering, decreased Quality of Life
• Increased development of chronic pain
• Associated with:
 – Pulmonary complications
 – Thromboembolic events
 – Increased length of stay / slower to mobilize
• Delirium
• PTSD

(Abou-Setta AM et al, 2011)
(White J, et al, 2011)
(Chong C, et al, 2010)
Barriers to Effective Pain Management

- Inadequate pain education
- Inadequate assessment
- Underestimation of analgesic requirements
- Failure to recognize patient variability
- Concern that pain may mask injury
- Fear of causing side-effects (S/E)
- Single modality therapy
- Inadequate resources
Pain Assessment

• Recall from Medical School
 – O – Onset
 – P – Provoking / Palliating factors
 – Q – Quality / Quantity
 – R – Radiation
 – S – Severity
 – T – Timing
Pain Assessment

• Origin(s) of Pain
 – Acute Pain
 • ie. Incisional pain, acute appendicitis
 – Chronic Pain
 • ie. Chronic back pain
 – Acute on Chronic Pain
 • Acute and chronic causes may or may not be related to each other
Pain Assessment – Visual Analogue Scale

Verbal Pain Intensity Scale

No Pain | Mild Pain | Moderate Pain | Severe Pain | Very Severe Pain | Worst Possible Pain

Visual Analogue Scale

No Pain | Worst Possible Pain

0-10 Numeric Pain Intensity Scale

0 1 2 3 4 5 6 7 8 9 10

No Pain | Moderate Pain | Worst Possible Pain

“FACES” Scale*

0 2 4 6 8 10
Pain Assessment

• Current Pain Medications
 – Accuracy and detail very important!
 • Name, dose, frequency, route
 • ie. Oxycontin 10mg TID po
 – Don’t forget to re-order or factor in patient’s pre-existing pain Rx usage when writing orders

• Conflicts with HPI / PMH
 – ie. Renal disease → avoid morphine
 – ie. NPO → avoid oral forms of medication
Pain Assessment

• Allergies / Intolerances
 – Drug allergies
 • Document drug and adverse reaction
 – Intolerances
 • ie. nausea / vomiting, hallucinations, disorientation, etc
Methods to Treat Pain

• Pharmacologic
 – Medications (po, iv, im, sc, pr, transdermal)
 • NSAIDs
 • Acetaminophen
 • Opioids
 • Gabapentin
 – Procedures
 • Regional Anesthesia
 • Local Anesthetic infiltration

• Surgical Intervention

(po = oral, iv = intravenous, im = intramuscular, sc = subcutaneous, pr = rectal)
Methods to Treat Pain

• Non-pharmacologic
 – Cognitive behavioural therapy (CBT)
 – Massage
 – Exercise
 – Acupuncture
 – Thermal
 – Transcutaneous electrical nerve stimulation (TENS)
 – Traction
 – Orthoses
Multimodal Analgesia

• Using more than one drug:
 – Acting at different places or with different mechanism
 – Each with a lower dose than if used alone

• Provides better analgesia with less side effects
 – eg. Acetaminophen + NSAID + Opioid + Regional

• Always consider multimodal analgesia when treating pain
WHO Analgesic Ladder

1. Pain
 - Paracetamol, aspirin, or NSAID

2. Pain persisting or increasing
 - ± Non-opioid
 - ± Adjuvant
 - Opioid for mild to moderate pain

3. Pain persisting or increasing
 - ± Non-opioid
 - ± Adjuvant
 - Opioid for moderate to severe pain
 - ± Non-opioid
 - ± Adjunct

Morphine, Fentanyl, etc

Codine, Tramadol, etc
Acetaminophen

- First line treatment for pain
- Mechanism: thought to inhibit prostaglandin synthesis in CNS → analgesia, antipyretic
- Only available in PO/PR form (in North America)
- Typical dose: 650 to 1000 mg q6h po
- Max dose: 4 g / 24 hrs from all sources
- Warning: ↓ dose / avoid in those with liver damage (ie. EtOH)
NSAIDs

• First-line treatment, has ceiling effect
• Mechanism
 – Block cyclooxygenase (COX) enzyme → ↓ prostaglandin synthesis
 – COX-2 → Prostaglandins → pain, inflammation, fever
 – COX-1 → Prostaglandins → gastric protection, hemostasis, renal function
• Ibuprofen 400 mg q6h po
• Celecoxib 200mg BID po
NSAIDs

• Warnings: ↓dose / avoid if patients with
 – GI ulceration
 – Bleeding issues or disorders, platelet problems
 – Renal and hepatic dysfunction
 – Cardiac risk
 – Asthma
 – Bone healing issues
 – Allergy
 • Avoid celecoxib if allergic to Sulpha based Rx
Opioids - Pros

• Rapid Onset
• IV & PO
• Works systemically, treats almost all types of pain
• Easily administered
• Antidote*
Opioids – Cons (side effects)

- Decreased LOC
- Respiratory Depression
- Hypotension and Vasodilation
- Nausea/Vomiting
- Higher intensity monitoring
- Immunosuppression
- Pruritus
- Ileus/Constipation
- Urinary Retention
- Tolerance
- Addiction
Opioids

• Morphine
 – Most commonly prescribed opioid in hospital
 – Metabolism:
 • Conjugation with glucuronic acid in liver and kidney
 ▫ Morphine-3-glucuronide (inactive)
 ▫ Morphine-6-glucuronide (active)
 • Impaired morphine glucuronide elimination in renal failure
 ▫ Prolonged ventilatory depression with small doses
 ▫ Due to metabolite buildup (morphine-6-glucuronide)
Opioids

• Hydromorphone (Dilaudid)
 – Better tolerated by elderly, better S/E profile
 – Preferred over morphine for renal disease patients
 – Low cost, IV and PO forms

• Oxycodone
 – Good S/E profile, but $$
 – PO form only
 – Percocet (oxycodone + acetaminophen)
Opioids

• Fentanyl
 – Potent, short acting opioid
 – IV form **must** be given in a monitored setting, with resuscitation equipment available
 • ie. OR, PACU, ICU
 – Transdermal (patch) form
 • Patch takes 48-72hrs for effect
 • Allows for constant background level of analgesia
Opioids – poorer choices

• Codeine
 – Metabolized into morphine by body
 – ↓ analgesia with ↑ S/E as dose increases
 – Ineffective in 10% of Caucasian patients

• Meperidine (Demerol)
 – Neurotoxic metabolite (normeperidine)
 – Avoid in renal disease
Opioids - Formulations

• Short acting forms
 – Need to be dosed frequently to maintain consistent analgesia

• Controlled Release forms
 – Provides more consistent steady state level
 – Helpful for severe pain or chronic pain situations
 – Never crush / split / chew controlled release pills
Opioids – Patient Controlled Analgesia

- Initial loading dose of drug
- Repeated self-administered doses

Time (minutes):

15 30 60 120
Opioids – Patient Controlled Analgesia

• Allows patient to reach their own minimum effective analgesic concentration (MEAC)
• Rapid titration (ie. Morphine 1mg q5 min)
• Better analgesia and less side effects than IM prn
• Locus of Control
Opioid Equianalgesic Table

<table>
<thead>
<tr>
<th>Drug</th>
<th>Equianalgesic Dose</th>
<th>Initial Adult Dose (>50kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV/SC/IM</td>
<td>Oral</td>
</tr>
<tr>
<td>Morphine</td>
<td>10 mg</td>
<td>20-30 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-10 mg q4h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-20 mg q4h</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>1.5 mg</td>
<td>4-7.5 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5-2 mg q4h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-4 mg q4h</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>N/A</td>
<td>10-20 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-10 mg q4h</td>
</tr>
</tbody>
</table>

In General:
- Conversion from IV to oral for morphine/hydromorphone is about x3
- Hydromorphone is about 5x more potent than Morphine on per mg basis
- Oxycodone is about 2x more potent than Morphine on per mg basis
Gabapentin

• Anti-epileptic drug, also useful in:
 – Neuropathic pain
 – Postherpetic neuralgia
 – Complex Regional Pain Syndrome (CRPS)
• Additive effect with NSAIDs
• Reduces opioid consumption by 16-67%
• Reduces opioid related side effects
• Improved functional recovery
• Drowsiness if dose increased too fast
Ketamine

- Mechanism: NMDA receptor antagonist
- Potent analgesic
- Hallucinations
- Secretions
- Increased sympathetic activity (Inc HR/BP, bronchodilation)
- Increases ICP
Other Adjuncts

• Other adjuncts may be used in specific situations:
 – Pregabalin (similar to gabapentin)
 – Amitriptyline
 – Nabilone
 – Butrans patch (buprenorphine)
Management of Side Effects

- **Nausea / Vomitting**
 - Ondansetron
 - Dimenhydrinate (Gravol)
 - Metoclopramide
 - Nabilone
 - Low dose Haloperidol (Haldol)

- **Pruritus**
 - Diphenhydramine (Benadryl)
 - Nalbuphine (Nubain)
Regional Anesthesia

• Involves blockade of nerve impulses using local anesthetics (LA)
• LA bind sodium channels preventing propagation of action potentials along nerves
• Wide variety of LA with different characteristics:
 – ie. Lidocaine – fast onset, short duration of action
 – ie. Bupivicaine (Marcaine) – slow onset, longer duration of action
Regional Anesthesia - Pros

- Intense, specific analgesia
- Decreased sedation
- Minimal side-effects
- Outlasts systemic analgesics
- Potential decreased LOS
- Potential reduced chronic pain/PTSD
- Potential blockade of neuroendocrine stress response
Regional Anesthesia - Cons

• Technical skill
• Procedural Risks
• LAST
• Prolonged block requires catheter
• Consent
Acute Pain to Chronic Pain

- 44% had trauma related chronic pain 3 yrs later
- 50-80% of traumatic amputees suffer from phantom limb pain
- Have more PTSD, anxiety, depression, disability, absence from work
- Evidence of regional catheters decreasing incidence of chronic pain

(Gadsden J, 2012)
Hip Fracture Trauma
Hip Fracture Population

• Elderly
 • Limited End-Organ Reserve
 • Potential for Cognitive Impairment
 • Delirium
 • Dementia
 • Poly-Pharmacy

• Potential for Pre-existing Conditions
 • ? Organ Dysfunction
 • Renal, Hepatic, Cardiac, Hematologic, etc
 • ? Chronic Pain
 • Pre-existing Opioid Use
Cognitive Impairment and Pain Management

• Delirium occurs in 13-44% of cognitively intact patients (Bjorkelund et al, 2010)

• Less likely to receive pain medication (Adunsky et al, 2002)
 • Difficulty in assessing pain (86%) (Rantala et al, 2014)
 • Up to 61% unable to respond appropriately (Kang et al, 2013)
 • Advanced dementia patients received 1/3 the amount of opioid analgesia (Morrison, Siu, 2000)
 • Worried about causing side-effects
Cognitive Impairment and Pain Management

• Pain and inadequate analgesia increases risk of delirium (Morrison et al, 2003)

• Opioids and other Rx can potentially increase risk of post-op confusion (Maxwell, White, 2013)
Hip Fracture & Regional Anesthesia

- Sensory Innervation to hip joint & capsule:
 - Lumbar plexus (Femoral nerve & Obturator nerve)
 - Sacral plexus (Sciatic nerve)

- Sensory Innervation to skin:
 - Iliohypogastric nerve
 - Lateral cutaneous nerve of the thigh
 - Superior Cluneal nerves
Fascia Iliaca Compartment Block

• A field block under the fascia iliaca
• Injected local anesthetic spreads in the plane under the fascia iliaca to target nerves
 • Femoral Nerve
 • Lateral Cutaneous Nerve of the Thigh
 • Obturator Nerve
Fascia Iliaca Compartment Block

• Pros
 • Easy
 • Safe (away from major vessels and nerves)
 • Fast (~5 minutes)
 • Minimal equipment
 • Blind or Ultrasound techniques
 • Ultrasound increases effectiveness of block (95% vs 77%)

• Cons
 • Large volume required
 • Not a surgical block
Fascia Iliaca Compartment Block
Fascia Iliaca Compartment Block

ORIGIINAL ARTICLE

Fascia iliaca compartment block: its efficacy in pain control for patients with proximal femoral fracture

Yuki Fujihara · Shigeo Fukunishi · Shoji Nishio · Jyuichi Miura · Sahoko Koyanagi · Shinichi Yoshiya

<table>
<thead>
<tr>
<th>Time</th>
<th>Group 1</th>
<th>Group 2</th>
<th>P < 0.05 (Welch's t test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-block</td>
<td>91</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>after 10min</td>
<td>31</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>after 12hr</td>
<td>81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fascia Iliaca Compartment Block

ULTRASOUND-GUIDED FASCIA ILIACA COMPARTMENT BLOCK FOR HIP FRACTURES IN THE EMERGENCY DEPARTMENT

Lawrence Haines, MD, MPH, RDMS,* Eitan Dickman, MD, RDMS, FACEP,* Sergey Ayvazyan, MD,* Michelle Pearl, DO, MA, RDMS,* Stanley Wu, MD, MBA, RDMS,† David Rosenblum, MD,‡ and Antonios Likourezos, MA, MPH*

![Graph showing Fascia Iliaca Compartment Block Pain Scores]
Fascia Iliaca Compartment Block

“Fascia iliaca blockade had the highest probability of being the most effective against delirium.”
Regional Anesthesia

• Neuraxial Techniques
 – Spinal (subarachnoid) anesthesia
 – Epidural anesthesia (lumbar and thoracic)
Regional Anesthesia

• Thoracic epidural for visceral surgery
Regional Anesthesia

• Thoracic epidural for visceral surgery
 – Blocks sympathetic nerve supply to gut:
 • Faster return of bowel function
 – Blocks somatic nerves to abdominal wall
 • Less pain and faster ambulation
 – Improved patient outcome and ↓ length of stay

Regional Anesthesia

- Thoracic epidural for visceral surgery
 - Always followed by APS while epidural in-situ
 - NEVER start long-acting or treatment doses of anticoagulation without discussion with APS first
 - ie. warfarin (Coumadin), clopidogrel (Plavix), dabigatran (Pradaxa), etc
Regional Anesthesia

• Truncal Nerve Blocks
 – TAP Block
 – Ilioinguinal Neve Block
 – Rectus Sheath Block
 – Serratus Anterior Block
 – Erector Spinae Block

http://pie.med.utoronto.ca/OBAnesthesia/OBAnesthesia_content/OBA_blocks_module.html
Regional Anesthesia

- Peripheral Nerve Blocks
 - Upper Limb: brachial plexus
 - Lower Limb: femoral, sciatic nerves

- Use of Ultrasound Imaging has revolutionized peripheral nerve blockade
 - Safety
 - Accuracy / Improved Success
 - Efficiency
Regional Anesthesia

- Ultrasound-guided Supraclavicular Brachial Plexus Block
Regional Anesthesia

- Ultrasound-guided Supraclavicular Brachial Plexus Block
Common Challenges

• Inadequate analgesia
 – ? Baseline analgesics re-ordered
 – ? Reasonable dose
 – ? Opioid rotation
 – Consider good multimodal regimen

• Difficult to manage nausea
 – ? Antiemetics
 – ? Change opioid
 – ? Standing antiemetic (ie. ondansetron) x 24 hrs
 – Balance between opioid dose and S/E
Common Challenges

• Constipation
 – Opioids only for incisional pain, not cramps
 – Encourage ambulation

• Delirium
 – Opioids only as required
 – Avoid Gravol

• Methadone
 – Generally continue Methadone
 – For pain vs. addiction
 – Need license
Pitfalls / Warning Signs

• Unexpected increase in:
 – Pain
 – Opioid consumption
 – Side effects
 • ie. Drowsiness

• Epidural Warning signs
 – Back pain
 – Bowel/bladder signs (cauda equina)
 – Unexpected Leg weakness
Opioid Overdose Management

• For unarousable, somnolent patient:
 – Stimulate patient (i.e. sternal rub)
 – Circulation (pulse, blood pressure, O_2 saturation)
 – Airway (jaw thrust, chin lift)
 – Breathing (respiratory rate)
 – CODE BLUE (if necessary)
Opioid Overdose Management

• Opioid Reversal – Naloxone
 – Opioid antagonist
 – Reverses effects of opioid overdose (for 30-45min)
 • Hypoventilation
 • Sedation
 – MUST BE diluted before use:
 • 0.4 mg/mL → 1mL Naloxone + 9mL Saline = 0.04 mg/mL
 – Give 0.04 to 0.08 mg (1 to 2 mL) IV q3-5 minutes
 – If no change after 0.2mg, consider other causes
Opioid Overdose Management

- Ddx:
 - Seizure, stroke
 - Other medication effect
 - Hyper/hypoglycemia, hyper/hyponatremia
 - Hypoxia, hypotension
 - MI
 - Sepsis
Case 1

- 85 year old female
 - Laparotomy for bowel resection
 - PMH: CAD, previous MI, renal insufficiency

- What are your options for perioperative pain management?
 - Consider epidural or truncal blocks (ie. TAP block)
 - May not be able to effectively use PCA
 - Consider hydromorphone prn for breakthrough pain
 - Standing acetaminophen

- Any treatments/Rx to avoid?
 - Avoid NSAIDs b/c of renal insufficiency, CAD
 - Avoid dimenhydrinate (Gravol) and benzodiazepines b/c elderly
Case 2

- 60 year old with Crohn’s disease
 - for laproscopic bowel resection
 - PMH: Chronic leg pain from previous MVA

- How are you going to manage his pain?
 - Continue pre-op pain medications
 - Avoid NSAIDs
 - Multimodal analgesia regimen

- POD#2, the patient has an significant increase in leg pain – what do you do?
 - Rule out reasons of increased pain (ie. DVT, compartment syndrome, etc.) instead of just increasing pain Rx dose
Acute Pain Service

- Consult service for complex / specialized pain management
- Anesthesiologists + Advance Practice Nurses
- Call for:
 - Advice
 - Difficult to manage cases
- Many post-op patients will be followed by APS
- If APS involved, APS must write all pain Rx orders
Summary

- Accurate pain assessment
- Use Multimodal pain management
 - NSAIDs, acetaminophen, opioids, etc.
 - Regional anesthesia techniques
- Make sure to continue or account for patient’s pre-hospital pain regimen
- Acute Pain Service available 24 hrs/day
Summary

• Superior analgesia, ↓ side effects means:
 – Better rehabilitation
 – Earlier functional return
 – Improved patient satisfaction
 – Earlier discharge from hospital
 – ↓ likelihood of chronic pain