ABG Interpretation:
A Respirologist’s approach
Dr. Shane Shapera
Division of Respirology
University Health Network
October 2017

Outline
• A quick review of acid-base physiology
• The 8 steps to ABG interpretation
• Discuss the causes of hypoxemia and hypercapnea

What use is an ABG?
• Assess acid-base balance
• Assess adequacy of ventilation
• Assess oxygenation

Acid-Base Disturbances
• Acidosis = process that makes the blood acidic
• Alkalosis = process that makes the blood alkaline
 • This is a diagnosis
 • Multiple disorders can exist simultaneously
• Acidemia = blood pH below 7.35
• Alkalemia = blood pH above 7.45
 • This is a sign
 • Net result of all concurrent disorders

Two kinds of pH disorders
1. “Respiratory” = 1º abnormality in ventilation (CO2)
2. “Metabolic” = 1º abnormality in any other acid or base

Acid-Base Disturbances
• When acidosis or alkalosis occurs, the body tries to normalize pH by “compensating” using buffers
 • If the primary process is metabolic,
 • We use lungs to increase or decrease ventilation to alter \(p_{\text{CO}_2} \)
 • This “respiratory compensation” takes minutes
 • If the primary process is respiratory,
 • We use kidneys to excrete either acid (NH4) or base (NaHCO3)
 • This “metabolic compensation” takes hours or days
• Compensation is always in the same direction as the primary problem
 • If \(p_{\text{CO}_2} \) rises, appropriate compensation increases HCO3-
 • If \(p_{\text{CO}_2} \) falls, appropriate compensation decreases HCO3-
 • If HCO3- rises, appropriate compensation increases \(p_{\text{CO}_2} \)
 • If HCO3- falls, appropriate compensation decreases \(p_{\text{CO}_2} \)

Alveolar Ventilation
• CO2 is normally tightly regulated
 • Small changes to CO2 alter ventilation
• Carotid body is essential to this regulation
 • This is a cluster of chemoreceptors in the carotid artery
 • Detects levels of [O2], [CO2] and [H+]
 • Sends signals to the brain
 • Alters ventilation in response to [CO2] and [H+]
• Carotid body response:
 • When patient has acidemia (low pH)
 • Carotid body makes you more sensitive to \([\text{CO}_2]\) ventilation
 • When patient has alkalemia (high pH)
 • Carotid body makes you less sensitive to \([\text{CO}_2]\) ventilation
Respiratory Acidosis

\[\uparrow \text{CO}_2 + \text{H}_2\text{O} \rightarrow \uparrow \text{H}^+ + \uparrow \text{HCO}_3^- \]

- Hypoventilation causes rise in \(p_{\text{CO}_2} \), shifts equilibrium to the right.
 - Acutely (10:1)
 - For each 10 mm Hg rise in \(p_{\text{CO}_2} \), \(\text{HCO}_3^- \) should increase by 1 mEq/L
 - This is due to equilibrium shift (buffering)
 - Chronically (10:3)
 - For each 10 mm Hg rise in \(p_{\text{CO}_2} \), \(\text{HCO}_3^- \) should increase by 3 mEq/L
 - This is due to renal compensation (excretion of \(\text{H}^+ \))
- Common causes
 - Lung disease
 - Neuromuscular disease
 - Sedative drugs
 - Adaptation to extreme obesity and sleep apnea

\[[\text{H}^+] = 24 \times p_{\text{CO}_2} \]

\[[\text{HCO}_3^-] \]

Respiratory Alkalosis

\[\downarrow \text{CO}_2 + \text{H}_2\text{O} \leftarrow \downarrow \text{H}^+ + \downarrow \text{HCO}_3^- \]

- Hyperventilation causes \(p_{\text{CO}_2} \) to fall, shifts equilibrium to the left.
 - Acutely (10:2)
 - For each 10 mm Hg fall in \(p_{\text{CO}_2} \), \(\text{HCO}_3^- \) should decrease by 2 mEq/L
 - This is due to equilibrium shift (buffering)
 - Chronically (10:4)
 - For each 10 mm Hg fall in \(p_{\text{CO}_2} \), \(\text{HCO}_3^- \) should decrease by 4 mEq/L
 - This is due to renal compensation (excretion of \(\text{HCO}_3^- \))
- Common causes
 - Anxiety / panic (including panic attacks)
 - Pregnancy
 - Early sepsis
 - Drugs (one component of ASA toxicity)
 - Mechanical ventilation at excessive rate or volumes

\[[\text{H}^+] = 24 \times p_{\text{CO}_2} \]

\[[\text{HCO}_3^-] \]

Metabolic Alkalosis

\[\uparrow \text{CO}_2 + \text{H}_2\text{O} \rightarrow \uparrow \text{H}^+ + \uparrow \text{HCO}_3^- \]

- Increase in \(\text{HCO}_3^- \) shifts equilibrium to the left
 - \(p_{\text{CO}_2} \) increases
 - Alkalemia makes the carotid body less sensitive to \([\text{CO}_2]\)
 - We “allow” the \(p_{\text{CO}_2} \) to stay elevated (maximum ~ 50 mmHg)
- Compensation (1:0.7)
 - For every 1 mEq rise in \(\text{HCO}_3^- \), \(p_{\text{CO}_2} \) increases by 0.7 mmHg
- Causes
 - Volume depletion (“contraction alkalosis”)
 - Nasogastric suction
 - Diuretics
 - Hyperaldosteronism

\[[\text{H}^+] = 24 \times p_{\text{CO}_2} \]

\[[\text{HCO}_3^-] \]

Metabolic Acidosis

\[\downarrow \text{CO}_2 + \text{H}_2\text{O} \leftarrow \downarrow \text{H}^+ + \downarrow \text{HCO}_3^- \]

- Two possible mechanisms of onset
 - Loss of \(\text{HCO}_3^- \)
 - Gain of \(\text{H}^+ \)
- Mechanisms of compensation are a bit more complex

\[[\text{H}^+] = 24 \times p_{\text{CO}_2} \]

\[[\text{HCO}_3^-] \]

Metabolic Acidosis – Bicarb Loss

\[\downarrow \text{CO}_2 + \text{H}_2\text{O} \leftarrow \downarrow \text{H}^+ + \downarrow \text{HCO}_3^- \]

- Loss of bicarbonate (ie. diarrhea) creates an acidemia (a relative increase in \([\text{H}^+]\))
 - Acidemia makes the carotid body more sensitive to \([\text{CO}_2]\) leading to increased ventilation
- Compensation (1:1)
 - For every drop of 1 mEq of \(\text{HCO}_3^- \), \(p_{\text{CO}_2} \) falls by 1 mmHg

\[[\text{H}^+] = 24 \times p_{\text{CO}_2} \]

\[[\text{HCO}_3^-] \]

Metabolic Acidosis – Acid Gain

\[\downarrow \text{CO}_2 + \text{H}_2\text{O} \leftarrow \uparrow \text{H}^+ + \downarrow \text{HCO}_3^- \]

- Some acid gets added to the body (ie. exercising muscle makes lactate), the equilibrium gets shifted to the left (which lowers \(\text{HCO}_3^- \) and \(\text{H}^+ \))
 - This causes a transient rise in \([\text{CO}_2]\)
 - \(\text{CO}_2 \) falls even lower than baseline, because acidemia makes the carotid body more sensitive to \([\text{CO}_2]\) leading to increased ventilation
- Compensation
 - For every drop of 1 mEq of \(\text{HCO}_3^- \), \(p_{\text{CO}_2} \) falls by 1 mmHg
- Examples of metabolic acidosis
 - Diarrhea/GI losses (loss of \(\text{HCO}_3^- \))
 - Lactic acidosis (lactic acid)
 - Renal failure (metabolic acids and loss of \(\text{HCO}_3^- \))
 - Diabetic ketoacidosis (acetate acid)
 - ASA (acetylsalicylic acid)
ABG Interpretation

“ABG’s in 8 steps”

A Case

- You get a call from your clinical clerk...
 - “I need your input on Ms. K. She is a 65 year old woman who is here for a small bowel obstruction. Med consults is following her for long standing back pain and they are working her up for possible cancer.”
- ABG (pH / PaCO2 / PaO2 / HCO3-)
 - 7.30 / 80 / 45 / 38
 - 3.6
 - 140 / 3.9 /
 - 100 / 35 \
 - 85

Step 1

- Step 1: Obtain ABG and electrolytes
 - If you don’t perform the test, you’ll never know what is going on with the patient
 - An ABG and a lactate are the 2 best tests to help you get a sick patient to the ICU

Step 2

- Step 1: Obtain ABG and electrolytes
 - If you don’t perform the test, you’ll never know what is going on with the patient
 - An ABG and a lactate are the 2 best tests to help you get a sick patient to the ICU

Step 2: What is the primary process?

A. Look at the pH.
 - Is it normal, acidemic or alkalemic?

B. Look at pCO2 – is it “concordant” with pH change?
 - Is CO2 an acid... So, is ΔCO2 in the direction that would cause pH change?
 - If concordant, the primary problem is respiratory
 - Low pH and high pCO2 indicates respiratory acidosis
 - High pH and low pCO2 indicates respiratory alkalosis
 - If not concordant, the primary problem is metabolic
 - Low pH and low pCO2 indicates metabolic acidosis
 - High pH and high pCO2 indicates metabolic alkalosis

Step 3: What is the compensation?

- Then look at HCO3-
 - Has it changed by the expected amount?
 - It doesn’t have to be “perfect”
 - Change in HCO3 can tell you
 - if the disorder is acute or chronic
 - Whether multiple disorders are present

<table>
<thead>
<tr>
<th></th>
<th>Δ pCO2</th>
<th>Δ HCO3-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Respiratory Acidosis</td>
<td>↑ 10</td>
<td>↑ 1</td>
</tr>
<tr>
<td>Acute Respiratory Alkalosis</td>
<td>↓ 10</td>
<td>↓ 2</td>
</tr>
<tr>
<td>Chronic Respiratory Acidosis</td>
<td>↑ 10</td>
<td>↑ 3</td>
</tr>
<tr>
<td>Chronic Respiratory Alkalosis</td>
<td>↓ 10</td>
<td>↓ 4</td>
</tr>
<tr>
<td>Metabolic Alkalosis</td>
<td>↑ 0.7</td>
<td>↑ 1</td>
</tr>
<tr>
<td>Metabolic Acidosis</td>
<td>↓ 1</td>
<td>↓ 1</td>
</tr>
</tbody>
</table>

- 7.30 / 80 / 45 / 38
Step 3: What is the compensation?

- If compensation is "right", there is one process
- If compensation doesn’t "fit", there may be more than one process going on

<table>
<thead>
<tr>
<th></th>
<th>Δ pCO2</th>
<th>Δ HCO3-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Respiratory Acidosis</td>
<td>↑ 10</td>
<td>↑ 1</td>
</tr>
<tr>
<td>Acute Respiratory Alkalosis</td>
<td>↓ 10</td>
<td>↓ 2</td>
</tr>
<tr>
<td>Chronic Respiratory Acidosis</td>
<td>↑ 10</td>
<td>↑ 3</td>
</tr>
<tr>
<td>Chronic Respiratory Alkalosis</td>
<td>↓ 10</td>
<td>↓ 4</td>
</tr>
<tr>
<td>Metabolic Alkalosis</td>
<td>↑ 0.7</td>
<td>↑ 1</td>
</tr>
<tr>
<td>Metabolic Acidosis</td>
<td>↓ 1</td>
<td>↓ 1</td>
</tr>
</tbody>
</table>

Step 4: Determine the Anion Gap

- 3.6
- 140 | / |
- 100 | 35 \ |
- 85

Anion Gap = Na⁺ - Cl⁻ - HCO3⁻
= 140 – 100 – 35
= 5 (normal is < 12)

Anion Gap – DDx

- Medical student answer: MUDPILES
- Real life answer...
 - Lactic acidosis
 - Ketosis (DKA, starvation, alcohol)
 - Renal failure
 - Poison (alcohols, ASA, cyanide)

Step 5: If an Anion Gap is present, is it the only process?

- Each molecule of unmeasured anion (ie. Lactate) donates a H⁺ which binds to HCO3⁻.
- H⁺ + HCO3⁻ → H₂O and CO₂
- Therefore, if there is only one process,
 - Amount of added acid = the increase in H⁺ = the fall in HCO3⁻
 - The amount of added acid is measured using the anion gap
 - So, the change in Anion Gap should equal the change in HCO3⁻.

Step 5: If an Anion Gap is present, is it the only process?

- Calculate ΔAG/ΔHCO3⁻ ratio
 - ΔAG = measured AG – 12
 - Δ HCO3⁻ = 24 – measured HCO3⁻
Step 5: If an Anion Gap is present, is it the only process?

- **Calculate ΔAG/ΔHCO3- ratio**
- If ΔAG/ΔHCO3- ratio = 1 → no other process
 - Ratio > 1, HCO3 is too low → concomitant non-AG acidosis
 - Ratio < 1, HCO3 is too high → concomitant alkalosis

Step 6: Determine the Osmolar (OSM) Gap

- OSM gap = measured OSM - calculated OSM
 - Measured OSM: given by the lab
 - Calculated OSM = (2 x Na*) + BG + BUN
 - *“Two salts and a sugar bun.”*
 - Normal Osmolar gap < 10

Step 6: Determine the Osmolar (OSM) Gap

- DDx of a high osmolar gap
 - Methanol*
 - Ethylene glycol*
 - Ethanol
 - Mannitol
 - Acetone
 - Isopropyl alcohol
 - Others…

* Anion gap AND osmolar gap

Step 7: Calculate the A-a gradient

- A-a gradient = PAO2 – PaO2
 = [(713) x FiO2] – [PaCO2/RQ]
 - PaO2 = measured with ABG

Step 7: Calculate the A-a gradient

- Normal A-a gradient
 - A-a gradient < 10 is normal
 - A-a gradient is higher in elderly (up to 20)
Step 8: Causes of hypoxemia

- List the 5 major causes of hypoxemia
- Which have a normal A-a gradient?
- Which have a high A-a gradient?

Step 8: Causes of hypoxemia

1. Low inspired O2 content (low FiO2 or low PiO2)
2. Hypoventilation

3. V/Q mismatch
 - Asthma, COPD, Alveolar filling (fluid, blood, pus), pHTN
4. Shunt
 - Physiologic shunt
 - Intra-cardiac (ASD, PFO or VSD)
 - Intra-pulmonary
 - With normal capillaries: atelectasis or consolidation
 - With abnormal capillaries: pAVM’s or HPS
5. Diffusion abnormality
 - Severe ILD, severe COPD, etc…

Summarize this ABG

- Step 1: Get the ABG
- Step 2: Determine primary abnormality
- Step 3: What is the compensation
- Step 4: Assess the anion gap
- Step 5: Is the anion gap the only process
- Step 6: Calculate the osmolar gap
- Step 7: Calculate the A-a gradient
- Step 8: Cause of hypoxemia

Causes of Hypercapnia

- What are the determinants of PaCO2?
- PaCO2 = (VCO2) / RR (Vt-Vd) x K
 - CO2 production
 - Respiratory rate
 - Tidal volume
 - Dead space volume

Causes of Hypercapnia

PaCO2 = (VCO2) / RR (Vt-Vd) x K

- High VCO2
 - fever, sepsis, seizures
- Low RR
 - drugs, brainstem lesions, hypothyroid
- Low Vt
 - muscle weakness (rapid shallow breathing pattern), neuromuscular disease, low chest wall compliance
- High Vd
 - ARDS, PE, COPD
Back to the case

- You get a call from your clinical clerk...
 - “I need your input on Ms. K. She is a 65 year old woman who is here for a small bowel obstruction. Med consults is following her for long standing back pain and they are working her up for possible cancer.”
- ABG (pH/PaCO2/PaO2/HCO3-)
 7.30 / 80 / 45 / 38
- You diagnose a chronic respiratory acidosis with a normal A-a gradient due to hypoventilation
 - You remove the fentanyl patch from her arm
 - You transfer her to the ICU

Back to the case

- 15 minutes later
 - Patient arrives in ICU
 - RT feels patient is worse
- ABG: 7.30 / 80 / 30 / 38
 - What happened?

Baseline ABG:
7.30 / 80 / 45 / 38

Back to the case

- ABG: 7.30 / 80 / 30 / 38
 - Acid base status unchanged
 - PaO2 fell from 45 → 30
- A-a gradient has increased
 - $A-a = PAO2 – PaO2$
 - $A-a = [150 – (1.25 x PaCO2)] – PaO2$
 - $A-a = [150 – (1.25 x 80)] – 30$
 - $A-a = 100 – 30$
 - $A-a = 70$
- DDx?

Baseline ABG:
7.30 / 80 / 45 / 38

Back to the case:
Causes of hypoxemia

1. Low inspired O2 content (low FiO2 or low PIO2)
2. Hypoventilation

3. V/Q mismatch
 - Asthma, COPD, Alveolar filling (fluid, blood, pus), pHTN
4. Shunt
 - Physiologic shunt
 - Intra-cardiac (ASD, PFO or VSD)
 - Intra-pulmonary
 - With normal capillaries: atelectasis or consolidation
 - With abnormal capillaries: pAVM’s or HPS
5. Diffusion abnormality
 - Severe ILD, severe COPD, etc...

Back to the case:
DDx of acute rise in A-a gradient

- V/Q mismatch
 - Aspiration pneumonitis
 - Flash pulmonary edema
 - Mucous plug
 - Pneumothorax
 - PE
 - (ARDS)

Review:
ABG interpretation in 8 steps

- Step 1: Get the ABG
- Step 2: Determine primary abnormality
- Step 3: What is the compensation
- Step 4: Assess the anion gap
- Step 5: Is the anion gap the only process
- Step 6: Calculate the osmolar gap
- Step 7: Calculate the A-a gradient
- Step 8: Causes of hypoxemia