ABG Interpretation:
A Respirologist’s approach

Dr. Shane Shapera
Division of Respirology
University Health Network
November 2016
Outline

• A quick review of acid-base physiology

• The 8 steps to ABG interpretation

• Discuss the causes of hypoxemia and hypercapnea
CO2 and Carbonic Acid

\[\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \]

Carbonic Acid

Bicarbonate

- These reactions are very fast, so consider them to always be in equilibrium.
What use is an ABG?

- Assess acid-base balance
- Assess adequacy of ventilation
- Assess oxygenation
Acid-Base Disturbances

- Acidosis = process that makes the blood acidic
- Alkalosis = process that makes the blood alkaline
 - This is a diagnosis
 - Multiple disorders can exist simultaneously
Acid-Base Disturbances

- Acidosis = process that makes the blood acidic
- Alkalosis = process that makes the blood alkaline
 - This is a diagnosis
 - Multiple disorders can exist simultaneously

- Acidemia = blood pH below 7.35
- Alkalemia = blood pH above 7.45
 - This is a sign
 - Net result of all concurrent disorders
Acid-Base Disturbances

• Acidosis = process that makes the blood acidic
• Alkalosis = process that makes the blood alkaline
 – This is a diagnosis
 – Multiple disorders can exist simultaneously

• Acidemia = blood pH below 7.35
• Alkalemia = blood pH above 7.45
 – This is a sign
 – Net result of all concurrent disorders

Two kinds of pH disorders
1. “Respiratory” = 1° abnormality in ventilation (CO2)
2. “Metabolic” = 1° abnormality in any other acid or base
Acid-Base Disturbances

• When acidosis or alkalosis occurs, the body tries to normalize pH by “compensating” using buffers

 – If the primary process is metabolic,
 • We use lungs to increase or decrease ventilation to alter $p_a \text{CO}_2$
 • This “respiratory compensation” takes minutes

 – If the primary process is respiratory,
 • We use kidneys to excrete either acid (NH4) or base (NaHCO3)
 • This “metabolic compensation” takes hours or days
Acid-Base Disturbances

- When acidosis or alkalosis occurs, the body tries to normalize pH by “compensating” using buffers
 - If the primary process is metabolic,
 - We use lungs to increase or decrease ventilation to alter p_aCO_2
 - This “respiratory compensation” takes minutes
 - If the primary process is respiratory,
 - We use kidneys to excrete either acid (NH4) or base (NaHCO3)
 - This “metabolic compensation” takes hours or days
- Compensation is always in the same direction as the primary problem
 - If p_aCO_2 rises, appropriate compensation increases HCO3-
 - If p_aCO_2 falls, appropriate compensation decreases HCO3-
 - If HCO3- rises, appropriate compensation increases p_aCO_2
 - If HCO3- falls, appropriate compensation decreases p_aCO_2
Alveolar Ventilation

• CO2 is normally tightly regulated
 – Small changes to CO2 alter ventilation

• Carotid body is essential to this regulation
 – This is a cluster of chemoceptors in the carotid artery
 – Detects levels of [O2], [CO2] and [H+]
 – Sends signals to the brain
 – Alters ventilation in response to [CO2] and [H+]
Alveolar Ventilation

• CO2 is normally tightly regulated
 – Small changes to CO2 alter ventilation

• Carotid body is essential to this regulation
 – This is a cluster of chemoceptors in the carotid artery
 – Detects levels of [O2], [CO2] and [H+]
 – Sends signals to the brain
 – Alters ventilation in response to [CO2] and [H+]

• Carotid body response:
 – When patient has acidemia (low pH)
 • Carotid body makes you more sensitive to [CO2] = ↑ ventilation
 – When patient has alkalemia (high pH)
 • Carotid body makes you less sensitive to [CO2] = ↓ ventilation
Respiratory Acidosis

\[\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \]

\[[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]} \]
Respiratory Acidosis

\[
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}^+ + \text{HCO}_3^-
\]

- Hypoventilation

\[
[H^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]}
\]
Respiratory Acidosis

$\uparrow \text{CO}_2 + \text{H}_2\text{O} \Leftrightarrow \text{H}^+ + \text{HCO}_3^-$

- Hypoventilation causes rise in $p_a\text{CO}_2$,
Respiratory Acidosis

$\uparrow \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}^+ + \text{HCO}_3^-$

- Hypoventilation causes rise in $p_a\text{CO}_2$, shifts equilibrium to the right.

$[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]}$
Respiratory Acidosis

\[\uparrow \text{CO}_2 + \text{H}_2\text{O} \rightarrow \uparrow \text{H}^+ + \uparrow \text{HCO}_3^- \]

- Hypoventilation causes rise in \(p_a \text{CO}_2 \), shifts equilibrium to the right.
 - Acutely (10:1)
 - For each 10 mm Hg rise in \(p_a \text{CO}_2 \), \(\text{HCO}_3^- \) should increase by 1 mEq/L
 - This is due to equilibrium shift (buffering)

\[
[\text{H}^+] = 24 \times \frac{\text{p}_a \text{CO}_2}{[\text{HCO}_3^-]}
\]
Respiratory Acidosis

\[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}^+ + \text{HCO}_3^- \]

• Hypoventilation causes rise in \(p_a\text{CO}_2 \), shifts equilibrium to the right.

– Acutely (10:1)
 • For each 10 mm Hg rise in \(p_a\text{CO}_2 \), \(\text{HCO}_3^- \) should increase by 1 mEq/L
 • This is due to equilibrium shift (buffering)

– Chronically (10:3)
 • For each 10 mm Hg rise in \(p_a\text{CO}_2 \), \(\text{HCO}_3^- \) should increase by 3 mEq/L
 • This is due to renal compensation (excretion of \(\text{H}^+ \))

\[[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]} \]
Respiratory Acidosis

\[\uparrow \text{CO}_2 + \text{H}_2\text{O} \rightarrow \uparrow \text{H}^+ + \uparrow \text{HCO}_3^- \]

- Hypoventilation causes rise in \(p_a \text{CO}_2 \), shifts equilibrium to the right.

 - Acutely (10:1)
 - For each 10 mm Hg rise in \(p_a \text{CO}_2 \), HCO3 should increase by 1 mEq/L
 - This is due to equilibrium shift (buffering)

 - Chronically (10:3)
 - For each 10 mm Hg rise in \(p_a \text{CO}_2 \), HCO3 should increase by 3 mEq/L
 - This is due to renal compensation (excretion of H+)

- Common causes
 - Lung disease
 - Neuromuscular disease
 - Sedative drugs
 - Adaptation to extreme obesity and sleep apnea

\[
[H+] = \frac{24 \times p_a \text{CO}_2}{[\text{HCO}_3^-]}
\]
Respiratory Alkalosis

\[\text{CO}_2 + \text{H}_2\text{O} \leftrightharpoons \text{H}^+ + \text{HCO}_3^- \]

\[[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]} \]
Respiratory Alkalosis

\[\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}^+ + \text{HCO}_3^- \]

- Hyperventilation

\[[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]} \]
Respiratory Alkalosis

\[\downarrow \text{CO}_2 + \text{H}_2\text{O} \Leftrightarrow \text{H}^+ + \text{HCO}_3^- \]

- Hyperventilation causes \(p_a\text{CO}_2 \) to fall,

\[[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]} \]
Respiratory Alkalosis

\[
\downarrow \text{CO}_2 + \text{H}_2\text{O} \quad \rightleftarrows \quad \text{H}^+ + \text{HCO}_3^-\]

- Hyperventilation causes $p_a\text{CO}_2$ to fall, shifts equilibrium to the left.

\[
[H^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]}\]
Respiratory Alkalosis

\[\downarrow \text{CO}_2 + \text{H}_2\text{O} \quad \iff \quad \downarrow \text{H}^+ + \downarrow \text{HCO}_3^- \]

- Hyperventilation causes \(p_a \text{CO}_2 \) to fall, shifts equilibrium to the left.
 - Acutely (10:2)
 - For each 10 mm Hg fall in \(p_a \text{CO}_2 \), HCO3 should decrease by 2 mEq/L
 - This is due to equilibrium shift (buffering)

\[[\text{H}^+] = \frac{24 \times p_a \text{CO}_2}{[\text{HCO}_3^-]} \]
Respiratory Alkalosis

\[\downarrow \text{CO}_2 + \text{H}_2\text{O} \quad \leftrightarrow \quad \downarrow \text{H}^+ + \downarrow \text{HCO}_3^- \]

- Hyperventilation causes \(p_a \text{CO}_2 \) to fall, shifts equilibrium to the left.
 - Acutely (10:2)
 - For each 10 mm Hg fall in \(p_a \text{CO}_2 \), HCO3 should decrease by 2 mEq/L
 - This is due to equilibrium shift (buffering)
 - Chronically (10:4)
 - For each 10 mm Hg fall in \(p_a \text{CO}_2 \), HCO3 should decrease by 4 mEq/L
 - This is due to renal compensation (excretion of HCO3-)

\[
[H^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]}
\]
Respiratory Alkalosis

\[\downarrow \text{CO}_2 + \text{H}_2\text{O} \quad \leftrightarrow \quad \downarrow \text{H}^+ + \downarrow \text{HCO}_3^- \]

- Hyperventilation causes \(p_a \text{CO}_2 \) to fall, shifts equilibrium to the left.

 - Acutely (10:2)
 - For each 10 mm Hg fall in \(p_a \text{CO}_2 \), \(\text{HCO}_3^- \) should decrease by 2 mEq/L
 - This is due to equilibrium shift (buffering)

 - Chronically (10:4)
 - For each 10 mm Hg fall in \(p_a \text{CO}_2 \), \(\text{HCO}_3^- \) should decrease by 4 mEq/L
 - This is due to renal compensation (excretion of \(\text{HCO}_3^- \))

- Common causes
 - Anxiety / panic (including panic attacks)
 - Pregnancy
 - Early sepsis
 - Drugs (one component of ASA toxicity)
 - Mechanical ventilation at excessive rate or volumes

\[[\text{H}^+] = \frac{24 \times p_a \text{CO}_2}{[\text{HCO}_3^-]} \]
Metabolic Alkalosis

\[\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}^+ + \text{HCO}_3^- \]

\[[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]} \]
Metabolic Alkalosis

\[
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \uparrow \text{HCO}_3^- \\
\]

- Increase in HCO3-

\[
[H^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3]}
\]
Metabolic Alkalosis

\[\text{CO}_2 + \text{H}_2\text{O} \Leftrightarrow \text{H}^+ + \uparrow\text{HCO}_3^-\]

- Increase in HCO\textsubscript{3}- shifts equilibrium to the left

\[\text{[H}^+] = \frac{24 \times p_a\text{CO}_2}{\text{[HCO}_3\text{]}}\]
Metabolic Alkalosis

\[\text{CO}_2 + \text{H}_2\text{O} \quad \text{↔} \quad \text{H}^+ + \text{HCO}_3^- \]

- Increase in HCO$_3^-$ shifts equilibrium to the left

\[[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]} \]
Metabolic Alkalosis

$\uparrow \text{CO}_2 + \text{H}_2\text{O} \leftarrow \text{H}^+ + \uparrow \text{HCO}_3^-$

- Increase in HCO3- shifts equilibrium to the left
 - $p_a\text{CO}_2$ increases

$[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]}$
Metabolic Alkalosis

$\uparrow \text{CO}_2 + \text{H}_2\text{O} \quad \leftarrow \quad \text{H}^+ + \uparrow \text{HCO}_3^-$

- Increase in HCO3- shifts equilibrium to the left
 - p_aCO2 increases
 - Alkalemia makes the carotid body less sensitive to [CO2]
 - We “allow” the p_aCO2 to stay elevated (maximum ~ 50 mmHg)

$[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]}$
Metabolic Alkalosis

\[\uparrow \text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \uparrow \text{HCO}_3^- \]

- Increase in HCO3- shifts equilibrium to the left
 - \(p_a \text{CO}_2 \) increases
 - Alkalemia makes the carotid body less sensitive to [CO2]
 - We “allow” the \(p_a \text{CO}_2 \) to stay elevated (maximum ~ 50 mmHg)

- Compensation (1:0.7)
 - For every 1 mEq rise in HCO3-, \(p_a \text{CO}_2 \) increases by 0.7 mmHg

\[
[H^+] = \frac{24 \times p_a \text{CO}_2}{[\text{HCO}_3^-]}
\]
Metabolic Alkalosis

\[\uparrow \text{CO}_2 + \text{H}_2\text{O} \xleftrightarrow{\text{H}^+ + \uparrow \text{HCO}_3^-} \]

- Increase in HCO$_3^-$ shifts equilibrium to the left
 - p_aCO$_2$ increases
 - Alkalemia makes the carotid body less sensitive to [CO$_2$]
 - We “allow” the p_aCO$_2$ to stay elevated (maximum ~ 50 mmHg)

- Compensation (1:0.7)
 - For every 1 mEq rise in HCO$_3^-$, p_aCO$_2$ increases by 0.7 mmHg

- Causes
 - Volume depletion (“contraction alkalosis”)
 - Nasogastric suction
 - Diuretics
 - Hyperaldosteronism

\[[\text{H}^+] = \frac{24 \times p_a \text{CO}_2}{\text{HCO}_3^-} \]
Metabolic Acidosis

• Two possible mechanisms of onset
 – Loss of HCO3-
 – Gain of H+

• Mechanisms of compensation are a bit more complex
Metabolic Acidosis – Bicarb Loss

\[\text{CO}_2 + \text{H}_2\text{O} \iff \text{H}^+ + \text{HCO}_3^- \]

• Loss of bicarbonate (ie. diarrhea) creates an acidemia (a relative increase in \([\text{H}^+]\))

\[[\text{H}^+] = \frac{24 \times p_a \text{CO}_2}{[\text{HCO}_3]} \]
Metabolic Acidosis – Bicarb Loss

\[\text{CO}_2 + \text{H}_2\text{O} \iff \text{H}^+ + \downarrow\text{HCO}_3^- \]

- Loss of bicarbonate (ie. diarrhea) creates an acidemia (a relative increase in \([\text{H}^+]\))
Metabolic Acidosis – Bicarb Loss

\[\text{CO}_2 + \text{H}_2\text{O} \iff \text{H}^+ + \downarrow\text{HCO}_3^- \]

• Loss of bicarbonate (ie. diarrhea) creates an acidemia (a relative increase in [H+])
 – Acidemia makes the carotid body more sensitive to [CO2] leading to increased ventilation

\[
[H+] = 24 \times \frac{p_a\text{CO}_2}{[\text{HCO}_3^-]}
\]
Metabolic Acidosis – Bicarb Loss

\[\downarrow \text{CO}_2 + \text{H}_2\text{O} \iff \text{H}^+ + \downarrow \text{HCO}_3^- \]

- Loss of bicarbonate (ie. diarrhea) creates an acidemia (a relative increase in $[\text{H}^+]$)
 - Acidemia makes the carotid body more sensitive to $[\text{CO}_2]$ leading to increased ventilation

- Compensation (1:1)
 - For every drop of 1 mEq of HCO$_3^-$, $p_a\text{CO}_2$ falls by 1 mmHg

$$[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]}$$
Metabolic Acidosis – Acid Gain

\[\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}^+ + \text{HCO}_3^- \]

- Some acid gets added to the body (ie. excercising muscle makes lactate)

\[[\text{H}^+] = \frac{24 \times p_a \text{CO}_2}{[\text{HCO}_3^-]} \]
Metabolic Acidosis – Acid Gain

\[\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \]

- Some acid gets added to the body (ie. excercising muscle makes lactate)

\[[\text{H}^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]} \]
Metabolic Acidosis – Acid Gain

CO$_2$ + H$_2$O $\xleftarrow{\uparrow}$ H$^+$ + HCO$_3^-$

- Some acid gets added to the body (ie. excercising muscle makes lactate), the equilibrium gets shifted to the left (which lowers HCO$_3^-$ and H$^+$)

$$[H^+] = \frac{24 \times p_a CO2}{[HCO3]}$$
Metabolic Acidosis – Acid Gain

\[\uparrow \text{CO}_2 + \text{H}_2\text{O} \quad \leftrightarrow \quad \uparrow \text{H}^+ + \downarrow \text{HCO}_3^- \]

- Some acid gets added to the body (i.e., exercising muscle makes lactate), the equilibrium gets shifted to the left (which lowers HCO3- and H+).

\[[\text{H}^+] = \frac{24 \times p_a \text{CO}_2}{[\text{HCO}_3^-]} \]
Metabolic Acidosis – Acid Gain

$\uparrow CO_2 + H_2O \leftrightarrow \uparrow H^+ + \downarrow HCO_3^-$

- Some acid gets added to the body (ie. exercising muscle makes lactate), the equilibrium gets shifted to the left (which lowers HCO_3^- and H^+)
 - This causes a transient rise in $[CO_2]$
Metabolic Acidosis – Acid Gain

Some acid gets added to the body (ie. exercising muscle makes lactate), the equilibrium gets shifted to the left (which lowers HCO₃⁻ and H+):

- This causes a transient rise in [CO₂]
- Excess CO₂ is quickly exhaled
- [CO₂] falls even lower than baseline, because acidemia makes the carotid body more sensitive to [CO₂] leading to increased ventilation

\[\uparrow \text{CO}_2 + \text{H}_2\text{O} \rightarrow \uparrow \text{H}^+ + \downarrow \text{HCO}_3^- \]

\[[\text{H}^+] = \frac{24 \times p_a \text{CO}_2}{[\text{HCO}_3^-]} \]
Metabolic Acidosis – Acid Gain

\[
\downarrow \text{CO}_2 + \text{H}_2\text{O} \quad \leftrightarrow \quad \uparrow \text{H}^+ + \downarrow \text{HCO}_3^-
\]

- Some acid gets added to the body (i.e. exercising muscle makes lactate), the equilibrium gets shifted to the left (which lowers HCO₃⁻ and H⁺)
 - This causes a transient rise in [CO₂]
 - Excess CO₂ is quickly exhaled
 - [CO₂] falls even lower than baseline, because acidemia makes the carotid body more sensitive to [CO₂] leading to increased ventilation

- Compensation
 - For every drop of 1 mEq of HCO₃⁻, \(p_a\)CO₂ falls by 1 mmHg

\[
[H^+] = \frac{24 \times p_a\text{CO}_2}{[\text{HCO}_3^-]}
\]
Metabolic Acidosis – Acid Gain

\[
\downarrow \text{CO}_2 + \text{H}_2\text{O} \quad \longleftrightarrow \quad \uparrow \text{H}^+ + \downarrow \text{HCO}_3^-
\]

• Some acid gets added to the body (ie. exercising muscle makes lactate), the equilibrium gets shifted to the left (which lowers HCO3- and H+)
 – This causes a transient rise in [CO2]
 – Excess CO2 is quickly exhaled
 – [CO2] falls even lower than baseline, because acidemia makes the carotid body more sensitive to [CO2] leading to increased ventilation

• Compensation
 – For every drop of 1 mEq of HCO3-, \(p_a \text{CO}_2 \) falls by 1 mmHg

• Examples of metabolic acidosis
 – Diarrhea/GI losses (loss of HCO3)
 – lactic acidosis (lactic acid)
 – renal failure (metabolic acids and loss of HCO3)
 – diabetic ketoacidosis (acetic acid)
 – ASA (acetylsalicylic acid)

\[
[H^+] = \frac{24 \times p_a \text{CO}_2}{[\text{HCO}_3^-]}
\]
ABG Interpretation

“ABG’s in 8 steps”
A Case

• You get a call from your clinical clerk…
 – “I need your input on Ms. K. She is a 65 year old woman who is here for a small bowel obstruction. Med consults is following her for long standing back pain and they are working her up for possible cancer.”

• ABG (pH / PaCO2 / PaO2 / HCO3-)

 7.30 / 80 / 45 / 38

 3.6

 140 | 3.9 /

 100 | 35 \ 85
A Case

• You get a call from your clinical clerk…

 “I need your input on Ms. K. She is a 65 year old woman who is here for a small bowel obstruction. Med consults is following her for long standing back pain and they are working her up for possible cancer.”

• ABG (pH / PaCO2 / PaO2 / HCO3-)

 7.30 / 80 / 45 / 38

 Please interpret this ABG
Step 1

- **Step 1: Obtain ABG and electrolytes**
 - If you don’t perform the test, you’ll never know what is going on with the patient
 - An ABG and a lactate are the 2 best tests to help you get a sick patient to the ICU

• 7.30 / 80 / 45 / 38
Step 2

• Step 1: Obtain ABG and electrolytes
 – If you don’t perform the test, you’ll never know what is going on with the patient
 – An ABG and a lactate are the 2 best tests to help you get a sick patient to the ICU

• Step 2:

• 7.30 / 80 / 45 / 38
Step 2

• **Step 1: Obtain ABG and electrolytes**
 – If you don’t perform the test, you’ll never know what is going on with the patient
 – An ABG and a lactate are the 2 best tests to help you get a sick patient to the ICU

• **Step 2: Determine the primary process:**
 – Is it an acidosis or an alkalosis?
 – Is the primary problem respiratory or metabolic?

• 7.30 / 80 / 45 / 38
Step 2: What is the primary process?

A. Look at the pH.
 - Is it normal, acidemic or alkalemic?
Step 2: What is the primary process?

A. Look at the pH.
 • Is it normal, acidemic or alkalemic?

B. Look at $p_a\text{CO}_2$—is it “concordant” with pH change?
 (i.e. CO2 is an acid… So, is ΔCO_2 in the direction that would cause pH change?)
Step 2: What is the primary process?

A. Look at the pH.
 • Is it normal, acidemic or alkalemic?

B. Look at p_aCO$_2$— is it “concordant” with pH change? (i.e. CO$_2$ is an acid… So, is ΔCO$_2$ in the direction that would cause pH change?)
 • If concordant, the primary problem is respiratory
 • Low pH and high p_aCO$_2$ indicates respiratory acidosis
 • High pH and low p_aCO$_2$ indicates respiratory alkalosis
 • If not concordant, the primary problem is metabolic
 • Low pH and low p_aCO$_2$ indicates metabolic acidosis
 • High pH and high p_aCO$_2$ indicates metabolic alkalosis
Step 2: What is the primary process?

A. Look at the pH.
 - Is it normal, acidemic or alkalemic?

B. Look at p_aCO2— is it “concordant” with pH change?
 (i.e. CO2 is an acid… So, is ΔCO2 in the direction that would cause pH change?)
 - If concordant, the primary problem is respiratory
 - Low pH and high p_aCO2 indicates respiratory acidosis
 - High pH and low p_aCO2 indicates respiratory alkalosis
 - If not concordant, the primary problem is metabolic
 - Low pH and low p_aCO2 indicates metabolic acidosis
 - High pH and high p_aCO2 indicates metabolic alkalosis
Step 3: What is the compensation?

- 7.30 / 80 / 45 / 38
Step 3: What is the compensation?

• Then look at HCO$_3^-$
 • Has it changed by the expected amount?
 • It doesn’t have to be “perfect”
 • Change in HCO$_3^-$ can tell you
 • if the disorder is acute or chronic
 • Whether multiple disorders are present

• 7.30 / 80 / 45 / 38
Step 3: What is the compensation?

- Then look at HCO_3^-
 - Has it changed by the expected amount?
 - It doesn’t have to be “perfect”
 - Change in HCO_3^- can tell you
 - if the disorder is acute or chronic
 - Whether multiple disorders are present

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \text{p}_a\text{CO}_2$</th>
<th>ΔHCO_3^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Respiratory Acidosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Respiratory Alkalosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic Respiratory Acidosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic Respiratory Alkalosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic Alkalosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic Acidosis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 7.30 / 80 / 45 / 38
Step 3: What is the compensation?

- Then look at HCO$_3^-$
 - Has it changed by the expected amount?
 - It doesn’t have to be “perfect”
 - Change in HCO$_3^-$ can tell you
 - if the disorder is acute or chronic
 - Whether multiple disorders are present

<table>
<thead>
<tr>
<th></th>
<th>Δ p_aCO$_2$</th>
<th>Δ HCO$_3^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Respiratory Acidosis</td>
<td>↑ 10</td>
<td>↑ 1</td>
</tr>
<tr>
<td>Acute Respiratory Alkalosis</td>
<td>↓ 10</td>
<td>↓ 2</td>
</tr>
<tr>
<td>Chronic Respiratory Acidosis</td>
<td>↑ 10</td>
<td>↑ 3</td>
</tr>
<tr>
<td>Chronic Respiratory Alkalosis</td>
<td>↓ 10</td>
<td>↓ 4</td>
</tr>
<tr>
<td>Metabolic Alkalosis</td>
<td>↑ 0.7</td>
<td>↑ 1</td>
</tr>
<tr>
<td>Metabolic Acidosis</td>
<td>↓ 1</td>
<td>↓ 1</td>
</tr>
</tbody>
</table>

• 7.30 / 80 / 45 / 38
Step 3: What is the compensation?

- If compensation is “right”, there is one process

- If compensation doesn’t “fit”, there may be more than one process going on

<table>
<thead>
<tr>
<th>Condition</th>
<th>Δ p_aCO2</th>
<th>Δ HCO3-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Respiratory Acidosis</td>
<td>↑ 10</td>
<td>↑ 1</td>
</tr>
<tr>
<td>Acute Respiratory Alkalosis</td>
<td>↓ 10</td>
<td>↓ 2</td>
</tr>
<tr>
<td>Chronic Respiratory Acidosis</td>
<td>↑ 10</td>
<td>↑ 3</td>
</tr>
<tr>
<td>Chronic Respiratory Alkalosis</td>
<td>↓ 10</td>
<td>↓ 4</td>
</tr>
<tr>
<td>Metabolic Alkalosis</td>
<td>↑ 0.7</td>
<td>↑ 1</td>
</tr>
<tr>
<td>Metabolic Acidosis</td>
<td>↓ 1</td>
<td>↓ 1</td>
</tr>
</tbody>
</table>

• 7.30 / 80 / 45 / 38
Step 4:

- 7.30 / 80 / 45 / 38
Step 4: Determine the Anion Gap

\[
\begin{array}{c|c}
3.6 \\
140 / \\
100 | 35 \\
\end{array}
\]

\[
\begin{array}{c|c}
 & 85 \\
\end{array}
\]

•7.30 / 80 / 45 / 38
Step 4: Determine the Anion Gap

3.6

\[
\begin{array}{c|c}
140 & _ \\
100 & 35 \\
\end{array}
\]

\[
\begin{array}{c}
85
\end{array}
\]

Anion Gap = Na\(^+\) - Cl\(^-\) - HCO\(_3^\-\)

= 140 - 100 - 35

= 5 (normal is < 12)

7.30 / 80 / 45 / 38
Anion Gap

• What is the anion gap?
• What is the anion gap?

All the cations in the body
(Na+)
Anion Gap

• What is the anion gap?

All the cations in the body
(Na+)

\[\begin{align*}
\text{+} & \quad \text{HCO}_3^- \\
\text{-} & \quad \text{Cl}^-
\end{align*} \]
Anion Gap

• What is the anion gap?

- All the cations in the body (Na+)
- ???
- HCO3-
- Cl-

Diagram: Yellow box represents ??? between Na+ and HCO3-.
Anion Gap

• What is the anion gap?

All the cations in the body (Na+)

Phosphate, Pyruvate, Sulfate, Lactate

Albumin

HCO3-

Cl-
Anion Gap

• What causes an increased anion gap?

An extra unmeasured anion

All the cations in the body (Na+)

+ Phosphate, Pyruvate, Sulfate, Lactate
 Albumin
 HCO₃⁻

- Cl⁻
Anion Gap – DDx

• Medical student answer
 – MUDPILES

• Real life answer…
Anion Gap – DDx

• Medical student answer
 – MUDPILES

• Real life answer...
 – Lactic acidosis
 – Ketosis (DKA, starvation, alcohol)
 – Renal failure
 – Poison (alcohols, ASA, cyanide)
Step 5

• Step 1: Get the ABG
• Step 2: Determine primary abnormality
• Step 3: What is the compensation
• Step 4: Assess the anion gap
• Step 5:

7.30 / 80 / 45 / 38
Step 5: If an Anion Gap is present, is it the only process?

• How do you determine if AG is the only process?

• 7.30 / 80 / 45 / 38
Step 5: If an Anion Gap is present, is it the only process?

- Each molecule of unmeasured anion (ie. Lactate) donates a H+ which binds to HCO3-

- \(\text{H}^+ + \text{HCO}_3^- \rightarrow \text{H}_2\text{O} \text{ and CO2} \)
Step 5: If an Anion Gap is present, is it the only process?

- Each molecule of unmeasured anion (ie. Lactate) donates a H+ which binds to HCO3-

- $H^+ + HCO_3^- \rightarrow H_2O$ and CO2

- Therefore, if there is only one process,
 - Amount of added acid = the increase in H^+ = the fall in HCO3-
 - The amount of added acid is measured using the anion gap
 - So, the change in Anion Gap should equal the change in HCO3-
Step 5: If an Anion Gap is present, is it the only process?

- Calculate $\Delta AG/\Delta HCO_3^-$ ratio

 $\Delta AG = \text{measured AG} - 12$

 $\Delta HCO_3^- = 24 - \text{measured HCO}_3^-$

- 7.30 / 80 / 45 / 38
Step 5: If an Anion Gap is present, is it the only process?

- Calculate $\Delta AG/\Delta HCO_3$- ratio

- If $\Delta AG/\Delta HCO_3$- ratio = 1 \rightarrow no other process
 - Ratio >1, HCO$_3$ is too low \rightarrow concomitant non-AG acidosis
 - Ratio <1, HCO$_3$ is too high \rightarrow concomitant alkalosis

- 7.30 / 80 / 45 / 38
Step 6

• Step 1: Get the ABG
• Step 2: Determine primary abnormality
• Step 3: What is the compensation
• Step 4: Assess the anion gap
• Step 5: Is the anion gap the only process
• Step 6:
Step 6: Determine the Osmolar (OSM) Gap

• How do you calculate the osmolar gap?
Step 6: Determine the Osmolar (OSM) Gap

• OSM gap = measured OSM - calculated OSM

 – Measured OSM: given by the lab

 – Calculated OSM = \((2 \times \text{Na}^+) + \text{BG} + \text{BUN} \)
 • “Two salts and a sugar bun.”

• Normal Osmolar gap < 10
Step 6: Determine the Osmolar (OSM) Gap

• DDx of a high osmolar gap
 – Methanol*
 – Ethylene glycol*
 – Ethanol
 – Mannitol
 – Acetone
 – Isopropyl alcohol
 – Others...

* Anion gap AND osmolar gap
Step 7

- Step 1: Get the ABG
- Step 2: Determine primary abnormality
- Step 3: What is the compensation
- Step 4: Assess the anion gap
- Step 5: Is the anion gap the only process
- Step 6: Calculate the osmolar gap
- Step 7:
Step 7: Calculate the A-a gradient

- Calculate the A-a gradient in this patient

7.30 / 80 / 45 / 38
Step 7: Calculate the A-a gradient

• A-a gradient = PAO2 – PaO2

• PAO2 = [(Pbar – PH20) x FiO2] – [PaCO2/RQ]
 = [(713) x FiO2] – [PaCO2/RQ]

• PaO2 = measured with ABG

7.30 / 80 / 45 / 38
Step 7: Calculate the A-a gradient

- \(\text{PAO2} = [(P_{\text{bar}} - P_{H20}) \times \text{FiO2}] - [\text{PaCO2/RQ}] \)

- \(A-a = \text{PAO2} - \text{PaO2} \)
Step 7: Calculate the A-a gradient

- \(\text{PAO2} = [(P_{\text{bar}} - PH_{20}) \times FiO2] - [\text{PaCO2}/RQ] \)

- \(\text{A-a} = \text{PAO2} - \text{PaO2} \)
- \(\text{A-a} = [(P_{\text{bar}} - PH_{20}) \times FiO2] - [\text{PaCO2}/RQ] - \text{PaO2} \)

- 7.30 / 80 / 45 / 38
Step 7: Calculate the A-a gradient

- $PAO2 = [(Pbar - PH20) \times FiO2] - [PaCO2/RQ]$

- $A-a = PAO2 - PaO2$
- $A-a = [(760 - 47) \times 0.21] - [PaCO2 / 0.8] - PaO2$
- $7.30 / 80 / 45 / 38$
Step 7: Calculate the A-a gradient

- A-a = PAO2 – PaO2
- A-a = [(760 – 47) x 0.21] – [PaCO2 / 0.8] – PaO2

\[\text{7.30 / 80 / 45 / 38}\]
Step 7: Calculate the A-a gradient

- \(\text{PAO}_2 = [(\text{Pbar} - \text{PH}_20) \times \text{FiO}_2] – [\text{PaCO}_2 / \text{RQ}] \)
- \(\text{A-a} = \text{PAO}_2 – \text{PaO}_2 \)
- \(\text{A-a} = [(\text{Pbar} - \text{PH}_20) \times \text{FiO}_2] – [\text{PaCO}_2 / \text{RQ}] – \text{PaO}_2 \)
- \(\text{A-a} = [(760 - 47) \times 0.21] – [\text{PaCO}_2 / 0.8] – \text{PaO}_2 \)
- \(\text{A-a} = [(760 - 47) \times 0.21] – [1.25 \times \text{PaCO}_2] – \text{PaO}_2 \)
- \(\text{A-a} = [(713) \times 0.21] – [1.25 \times \text{PaCO}_2] – \text{PaO}_2 \)
- \(7.30 / 80 / 45 / 38\)
Step 7: Calculate the A-a gradient

- $PAO2 = [(P_{bar} - PH20) \times FiO2] - [PaCO2/RQ]$
- $A-a = PAO2 - PaO2$
- $A-a = [(760 - 47) \times 0.21] - [PaCO2 / 0.8] - PaO2$
- $A-a = [(760 - 47) \times 0.21] - [1.25 \times PaCO2] - PaO2$
- $A-a = [(713) \times 0.21] - [1.25 \times PaCO2] - PaO2$
- $\text{7.30 / 80 / 45 / 38}$
Step 7: Calculate the A-a gradient

- **PAO2** = \[(P_{bar} - PH20) \times FiO2\] – [PaCO2/RQ]

- A-a = PAO2 – PaO2
- A-a = [(760 – 47) \times 0.21] – [PaCO2 / 0.8] – PaO2
- A-a = [(713) \times 0.21] – [1.25 \times PaCO2] – PaO2
- **A-a** = [150] – [1.25 \times PaCO2] – PaO2 - Simplified version for pt on R/A

7.30 / 80 / 45 / 38
Step 7: Calculate the A-a gradient

- \(PAO2 = [(Pbar - PH20) \times FiO2] - [PaCO2/RQ] \)
- \(A-a = PAO2 - PaO2 \)
- \(A-a = [(Pbar - PH20) \times FiO2] - [PaCO2/RQ] - PaO2 \)
- \(A-a = [(760 - 47) \times 0.21] - [PaCO2 / 0.8] - PaO2 \)
- \(A-a = [(760 - 47) \times 0.21] - [1.25 \times PaCO2] - PaO2 \)
- \(A-a = [(713) \times 0.21] - [1.25 \times PaCO2] - PaO2 \)
- \(A-a = [150] - [1.25 \times PaCO2] - PaO2 \)
- 7.30 / 80 / 45 / 38
Step 7: Calculate the A-a gradient

- A-a = PAO2 – PaO2
- A-a = [(760 – 47) x 0.21] – [PaCO2 / 0.8] – PaO2

- 7.30 / 80 / 45 / 38
Step 7: Calculate the A-a gradient

- A-a = PAO2 – PaO2
- A-a = [(760 – 47) x 0.21] – [PaCO2 / 0.8] – PaO2

- 7.30 / 80 / 45 / 38
Step 7: Calculate the A-a gradient

- \(\text{PAO2} = [(P_{\text{bar}} - PH20) \times FiO2] - [\text{PaCO2/RQ}] \)

- \(A-a = \text{PAO2} - \text{PaO2} \)
- \(A-a = [(P_{\text{bar}} - PH20) \times FiO2] - [\text{PaCO2/RQ}] - \text{PaO2} \)
- \(A-a = [(760 - 47) \times 0.21] - [\text{PaCO2 / 0.8}] - \text{PaO2} \)
- \(A-a = [(760 - 47) \times 0.21] - [1.25 \times \text{PaCO2}] - \text{PaO2} \)
- \(A-a = [(713) \times 0.21] - [1.25 \times \text{PaCO2}] - \text{PaO2} \)
- \(A-a = [150] - [1.25 \times \text{PaCO2}] - \text{PaO2} \)
- \(A-a = [150] - [1.25 \times 80] - \text{PaO2} \)
- \(A-a = [150] - [100] - \text{PaO2} \)
- \(A-a = 50 - \text{PaO2} \)

- \(7.30 / 80 / 45 / 38 \)
Step 7: Calculate the A-a gradient

- A-a = PAO2 – PaO2
- A-a = [(760 – 47) x 0.21] – [PaCO2 / 0.8] – PaO2
- A-a = 50 – PaO2
- A-a = 50 – 45

- 7.30 / 80 / 45 / 38
Step 7: Calculate the A-a gradient

- $PAO_2 = [(P_{bar} - PH_20) \times FiO_2] - [PaCO_2/RQ]$

- $A-a = PAO_2 - PaO_2$
- $A-a = [(P_{bar} - PH_20) \times FiO_2] - [PaCO_2/RQ] - PaO_2$
- $A-a = [(760 - 47) \times 0.21] - [PaCO_2 / 0.8] - PaO_2$
- $A-a = [(760 - 47) \times 0.21] - [1.25 \times PaCO_2] - PaO_2$
- $A-a = [(713) \times 0.21] - [1.25 \times PaCO_2] - PaO_2$
- $A-a = [150] - [1.25 \times PaCO_2] - PaO_2$
- $A-a = [150] - [1.25 \times 80] - PaO_2$
- $A-a = [150] - [100] - PaO_2$
- $A-a = 50 - PaO_2$
- $A-a = 50 - 45$
- $A-a = 5$

$7.30 / 80 / 45 / 38$
Step 7: Calculate the A-a gradient

• What is a normal A-a gradient?
Step 7: Calculate the A-a gradient

• Normal A-a gradient
 – A-a gradient < 10 is normal
 – A-a gradient is higher in elderly (up to 20)
Step 8: Causes of hypoxemia

- List the 5 major causes of hypoxemia
- Which have a normal A-a gradient?
- Which have a high A-a gradient?
Step 8: Causes of hypoxemia

1. Low inspired O2 content (low FiO2 or low PiO2)
2. Hypoventilation

3. V/Q mismatch
 - Asthma, COPD, Alveolar filling (fluid, blood, pus), pHTN
4. Shunt
 - Physiologic shunt
 - Intra-cardiac (ASD, PFO or VSD)
 - Intra-pulmonary
 - With normal capillaries: atelectasis or consolidation
 - With abnormal capillaries: pAVM’s or HPS
5. Diffusion abnormality
 - Severe ILD, severe COPD, etc…
Summarize this ABG

- Step 1: Get the ABG
- Step 2: Determine primary abnormality
- Step 3: What is the compensation
- Step 4: Assess the anion gap
- Step 5: Is the anion gap the only process
- Step 6: Calculate the osmolar gap
- Step 7: Calculate the A-a gradient
- Step 8: Cause of hypoxemia

7.30 / 80 / 45 / 38
140 | 3.6
100 | 35 \ 85
Summarize this ABG

• Step 1: done
• Step 2: chronic respiratory acidosis
• Step 3: compensated appropriately (10:3.5)
• Step 4: anion gap = 5 (normal)
• Step 5: no anion gap present
• Step 6: osmolar gap (can’t do)
• Step 7: A-a gradient = 5 (normal)
• Step 8: hypoxemia due to hypoV

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.30</td>
<td>80</td>
<td>45</td>
<td>38</td>
</tr>
<tr>
<td>140</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>35</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>
Causes of Hypercapnia

• What are the determinants of PaCO2?
Causes of Hypercapnia

• What are the determinants of PaCO2?

• \[\text{PaCO2} = \frac{\text{VCO2}}{\text{RR} \ (\text{Vt-Vd}) \times K} \]
 – CO2 production
 – Respiratory rate
 – Tidal volume
 – Dead space volume
Causes of Hypercapnia

\[\text{PaCO}_2 = \frac{(VCO_2)}{\text{RR} \ (V_t-V_d)} \times K \]

- High VCO2
Causes of Hypercapnia

PaCO2 = \frac{(VCO2)}{RR (Vt-Vd)} x K

- High VCO2
 - fever, sepsis, seizures
Causes of Hypercapnia

\[\text{PaCO2} = \frac{\text{VCO2}}{\text{RR} \times (\text{Vt-Vd}) \times K} \]

- High VCO2
 - fever, sepsis, seizures

- Low RR
Causes of Hypercapnia

\[\text{PaCO}_2 = \frac{(\text{VCO}_2)}{\text{RR}} \times (\text{Vt-Vd}) \times K \]

- **High VCO2**
 - fever, sepsis, seizures

- **Low RR**
 - drugs, brainstem lesions, hypothyroid
Causes of Hypercapnia

\[\text{PaCO2} = \frac{(\text{VCO2})}{\text{RR}} (\text{Vt-Vd}) \times K \]

- **High VCO2**
 - fever, sepsis, seizures

- **Low RR**
 - drugs, brainstem lesions, hypothyroid

- **Low Vt**
Causes of Hypercapnia

\[\text{PaCO}_2 = \frac{(\text{VCO}_2)}{\text{RR}} \times (\text{Vt-Vd}) \times K \]

- **High VCO2**
 - fever, sepsis, seizures

- **Low RR**
 - drugs, brainstem lesions, hypothyroid

- **Low Vt**
 - muscle weakness (rapid shallow breathing pattern), neuromuscular disease, low chest wall compliance
Causes of Hypercapnia

\[\text{PaCO}_2 = \frac{\text{VCO}_2}{\text{RR} \times (\text{Vt-Vd}) \times K} \]

- **High VCO2**
 - fever, sepsis, seizures

- **Low RR**
 - drugs, brainstem lesions, hypothyroid

- **Low Vt**
 - muscle weakness (rapid shallow breathing pattern), neuromuscular disease, low chest wall compliance

- **High Vd**
Causes of Hypercapnia

PaCO2 = \((\text{VCO2}) / \text{RR} \times (\text{Vt-Vd}) \times K\)

- **High VCO2**
 - fever, sepsis, seizures

- **Low RR**
 - drugs, brainstem lesions, hypothyroid

- **Low Vt**
 - muscle weakness (rapid shallow breathing pattern), neuromuscular disease, low chest wall compliance

- **High Vd**
 - ARDS, PE, COPD
Back to the case

• You get a call from a your clinical clerk…
 – “I need your input on Ms. K. She is a 65 year old woman who is here for a small bowel obstruction. Med consults is following her for long standing back pain and they are working her up for possible cancer.”

• ABG (pH/PaCO2/PaO2/HCO3-)

 7.30 / 80 / 45 / 38
Back to the case

• You get a call from a your clinical clerk…
 – “I need your input on Ms. K. She is a 65 year old woman who is here for a small bowel obstruction. Med consults is following her for long standing back pain and they are working her up for possible cancer.”

• ABG (pH/PaCO2/PaO2/HCO3-)

 7.30 / 80 / 45 / 38

• You diagnose a chronic respiratory acidosis with a normal A-a gradient due to hypoventilation
 – You remove the fentanyl patch from her arm
 – You transfer her to the ICU
Back to the case

• 15 minutes later
 – Patient arrives in ICU
 – RT feels patient is worse

• ABG: 7.30 / 80 / 30 / 38
 – What happened?

Baseline ABG:
7.30 / 80 / 45 / 38
Back to the case

- ABG: 7.30 / 80 / 30 / 38
 - Acid base status unchanged
 - PaO2 fell from 45 → 30

- A-a gradient has increased
 - A-a = PAO2 – PaO2
 - A-a = [150 – (1.25 x PaCO2)] – PaO2
 - A-a = [150 – (1.25 x 80)] – 30
 - A-a = 20

- DDx?

Baseline ABG: 7.30 / 80 / 45 / 38
Back to the case:
Causes of hypoxemia

1. Low inspired O2 content (low FiO2 or low PiO2)
2. Hypoventilation

3. V/Q mismatch
 - Asthma, COPD, Alveolar filling (fluid, blood, pus), pHTN

4. Shunt
 - Physiologic shunt
 - Intra-cardiac (ASD, PFO or VSD)
 - Intra-pulmonary
 • With normal capillaries: atelectasis or consolidation
 • With abnormal capillaries: pAVM’s or HPS

5. Diffusion abnormality
 - Severe ILD, severe COPD, etc…
Back to the case:
DDx of acute rise in A-a gradient

- V/Q mismatch
 - Aspiration pneumomomitis
 - Flash pulmonary edema
 - Mucous plug
 - Pneumothorax
 - PE
 - (ARDS)
Review:
ABG interpretation in 8 steps

- Step 1: Get the ABG
- Step 2: Determine primary abnormality
- Step 3: What is the compensation
- Step 4: Assess the anion gap
- Step 5: Is the anion gap the only process
- Step 6: Calculate the osmolar gap
- Step 7: Calculate the A-a gradient
- Step 8: Causes of hypoxemia
Questions?